
Formally Verifed Samplers From Discrete Probabilistic Programs

A dissertation presented to

the faculty of

the Russ College of Engineering and Technology of Ohio University

In partial fulfllment

of the requirements for the degree

Doctor of Philosophy

Alexander A. Bagnall

May 2023

© 2023 Alexander A. Bagnall. All Rights Reserved.

2

This dissertation titled

Formally Verifed Samplers From Discrete Probabilistic Programs

by

ALEXANDER A. BAGNALL

has been approved for

the School of Electrical Engineering and Computer Science

and the Russ College of Engineering and Technology by

David W. Juedes, Ph.D.

Professor, School of Electrical Engineering and Computer Science

J. Gordon Stewart, Ph.D.

Maj Mirmirani, Ph.D.

Interim Dean, Russ College of Engineering and Technology

3

Abstract

BAGNALL, ALEXANDER A., Ph.D., May 2023, Computer Science

Formally Verifed Samplers From Discrete Probabilistic Programs (187 pp.)

Directors of Dissertation: David W. Juedes, Ph.D. and J. Gordon Stewart, Ph.D.

This dissertation presents Zar: a formally verifed compilation pipeline from discrete

probabilistic programs in the conditional probabilistic guarded command language

(cpGCL) to proved-correct executable samplers in the random bit model. Zar exploits the

key idea that discrete probability distributions can be reduced to unbiased coin-fipping

schemes. The compiler pipeline frst translates cpGCL programs into choice-fx trees, an

intermediate representation suitable for reduction of biased probabilistic choices.

Choice-fx trees are then translated to coinductive interaction trees for execution within the

random bit model. The correctness of the composed translations establishes the sampling

equidistribution theorem: compiled samplers are correct with respect to the conditional

weakest pre-expectation (cwp) semantics of their cpGCL source programs. Zar is

implemented and fully verifed in the Coq proof assistant. We extract verifed samplers to

OCaml and Python and empirically validate them on a number of illustrative examples.

We additionally present AlgCo (Algebraic Coinductives), a practical framework for

inductive reasoning over coinductive types such as conats, streams, and infnitary trees

with fnite branching factor, developed during the course of this work to enable convenient

formal reasoning for coinductive samplers generated by Zar. The key idea is to exploit the

notion of algebraic CPO from domain theory to defne continuous operations over

coinductive types via primitive recursion on “dense” collections of their elements,

enabling a convenient strategy for reasoning about algebraic coinductives by

straightforward proofs by induction. We implement the AlgCo library in Coq and

demonstrate its utility by verifying a stream variant of the sieve of Eratosthenes, a regular

expression library based on coinductive tries, and weakest pre-expectation semantics for

4

potentially nonterminating sampling processes over discrete probability distributions in

the random bit model.

5

Table of Contents

Page

Abstract . 3

List of Tables . 8

List of Figures . 9

1 Introduction . 11
1.1 Motivation and Purpose . 11
1.2 Challenges . 13
1.3 Contributions . 16
1.4 Limitations . 19

2 Background . 20
2.1 Probabilistic Programming Languages . 20
2.2 Inference . 21

2.2.1 Bayes’ Rule . 22
2.2.2 Exact Inference . 23
2.2.3 Approximate Inference . 24

2.3 The Conditional Probabilistic Guarded Command Language 25
2.4 Conditional Weakest Pre-Expectation Semantics 26
2.5 Semantics of Loops . 30
2.6 Interaction Trees . 37
2.7 The Random Bit Model . 39
2.8 Uniform Distribution Modulo 1 . 40
2.9 Induction and Coinduction . 42
2.10 Domain Theory . 45
2.11 Measure Theory . 48

3 Formal Foundation . 51
3.1 Axiomatic Extensions . 51
3.2 Computing Suprema . 53
3.3 Conditional Symmetry . 56
3.4 cpGCL Formalized . 59
3.5 cwp Formalized . 61

4 Compiling cpGCL . 65
4.1 Choice-Fix (CF) Trees . 65
4.2 CF Tree Semantics . 68
4.3 Compiling to CF Trees . 69

6

4.4 De-Biasing CF Trees . 71
4.5 Generating Interaction Trees . 75

5 Correctness of Sampling . 80
5.1 The Source of Randomness . 80
5.2 Inference as Measure . 82
5.3 Equidistribution . 84

6 Algebraic Coinductives . 87
6.1 Appetite for Elimination . 87
6.2 Algebraic CPOs . 92
6.3 Continuous Extensions . 95

6.3.1 Existence and Uniqueness of Continuous Extensions 96
6.3.2 Proof Principles for Continuous Extensions 97

6.4 Cocontinuous Extensions . 99
6.5 (Co-)continuous Properties . 100
6.6 Conats . 102

6.6.1 Coinductive Extensionality . 103
6.6.2 Unlimited Fuel . 104

6.7 Streams . 106
6.7.1 Cofolds . 109
6.7.2 Proving With Fusion . 115
6.7.3 Proving (Co-)Continuous Properties 116
6.7.4 Sieve of Eratosthenes . 117
6.7.5 Extracting the Sieve . 118

6.8 Coinductive Tries . 119
6.8.1 Regular Languages . 123

7 Cotrees . 127
7.1 Coinductive Trees as an Algebraic CPO 128
7.2 Cofolds Over Cotrees . 131
7.3 Weakest Pre-Expectations for Cotrees . 136
7.4 Coinductive Measure . 139
7.5 Compiling CF Trees to Cotrees . 143

7.5.1 Cotree Iteration Combinator . 144
7.6 Relating to Interaction Trees . 147

8 Empirical Validation . 151
8.1 Dueling Coins . 153
8.2 Geometric Primes . 153
8.3 Uniform Sampling . 154
8.4 Discrete Gaussian . 155

8.4.1 Inverse Exponential Bernoulli . 156

7

8.4.2 Discrete Laplace . 157
8.4.3 Discrete Gaussian . 159

8.5 Hare and Tortoise . 160

9 Related Work . 161
9.1 Zar . 161
9.2 AlgCo . 162

10 Conclusion . 166
10.1 Achievements of This Dissertation . 166
10.2 Directions for Future Work . 167

References . 169

Appendix: Extended Reals . 184

8

List of Tables

Table Page

2.1 Table of notations used in the defnition of wp and wlp semantics. 27
2.2 Weakest pre-expectation (wp) and weakest liberal pre-expectation (wlp)

semantics by induction on the syntax of cpGCL. 28

3.1 wp and wlp semantics with optional inclusion of probability mass of
observation failure. 58

8. 2 4 11 Accuracy and entropy usage for Prog. 8.2a with p = 3 , 5 , and mubit and20 .
σbit increase as p is goes further from 1

2 due to increasing Shannon entropy of
Bernoulli(p). 154

8.2 Accuracy and entropy usage for Prog. 1.1a with p = 1
2 , 2

3 , and 1
5 . µbit and

σbit are high when p = 1
5 due to low probability of ‘h is prime’, illustrating a

general weakness (entropy waste) of our rejection samplers when conditioning
on low-probability events. 154

8.3 Accuracy and entropy usage for Prog. 8.2b with n = 6, 200, and 10k (with
Shannon entropies 2.59, 7.64, and 13.29, respectively). µbit and σbit therefore
show relatively good performance with near entropy-optimality. 155

8.4 Comparison of 200-sided die samplers with output x. Tinit denotes time elapsed
over construction and initializion of the sampler, and Ts the total time to
generate 100k samples. 156

8.5 Accuracy and entropy usage for Figure 8.4. 157
8.6 Accuracy and entropy usage for Figure 8.5 with scale parameter s

t 158
8.7 Accuracy and entropy usage for Figure 8.6 with mean µ and variance σ2. 159

9

List of Figures

Figure Page

1.1 Geometric primes program (left) and its posterior distribution over h (right). . . 13
1.2 Zar pipeline diagram showing (1) the compiler from cpGCL to CF trees

(Section 4.1), (2) debiasing of probabilistic choices (Section 4.3), (3)
generation of interaction trees from CF trees (Section 4.5), and (4) extraction
for efficient execution in OCaml and Python (Chapter 8). 18

2.1 cpGCL syntax . 25
2.2 Diagrams illustrating probability masses of sets of program executions from

a fxed initial state, with (right) and without (left) conditioning. The region
labeled T represents the mass of executions that terminate in some fnal state.
D is the mass of divergent executions (thus, the mass of T ∪ D is equal to 1).
P ⊆ T corresponds to the subset of terminating executions that result in a state
satisfying predicate P, and C ⊆ T to the subset of executions that are consistent
with all observations in the program. 29

2.3 Loop counter cpGCL program . 33
2.4 Simulating a fair coin from one with bias p 34

4.1 Zar compiler pipeline. 65
4.2 CF tree term representation of Program 1.1a. 67
4.3 choice CF tree with Pr(true) = 3

2 (left) and corresponding debiased CF tree
(right). 71

4.4 Illustration of redundant choice nodes. 74
4.5 ITree encoding of Bernoulli(2

3) distribution corresponding to the CF tree
in Figure 4.3b. The corecursive occurrence of it 2 is guarded by a tau

3
constructor, a common practice (although not necessary in this example) to
ensure productivity of the ITree (see Section 6.1 for related discussion on tau
nodes). 76

4.6 Interaction trees generated by ‘to itree open primes’ (left) and then by “tying
the knot” via ‘tie itree’ (right), where ‘primes’ is the cpGCL program in
Figure 1.1a. 78

5.1 Interval bisection scheme (left) and its application to ITree t 2 (right). 82
3

6.1 Haskell extraction primitive for coiter. Parameters o and p are OType and
PType instance dictionary objects for the order relation of the codomain. 106

6.2 Haskell extraction primitive for cofold. Parameters o and p are OType and
PType instance dictionary objects for the order relation of the codomain. 119

6.3 Coinductive trie encoding of regular language ‘� + a ∗b + b∗ a’ over alphabet {a,
b}. Green nodes indicate accept states of the encoded automaton. 120

https://github.com/bagnalla/algco/blob/main/order.v#L28
https://github.com/bagnalla/algco/blob/main/order.v#L62
https://github.com/bagnalla/algco/blob/main/order.v#L28
https://github.com/bagnalla/algco/blob/main/order.v#L62

10

7.1 Zar compiler pipeline with alternate cotree backend and equidistribution result. 127
7.3 Illustration of cotree encoding of Bernoulli(2

3) distribution from Figure 7.2. . . 129
7.2 Cotree term corresponding to the ITree in Figure 4.5. 129
7.4 Haskell extraction primitive for cofoldT∗ . 134
7.5 Haskell extraction primitive for iterT∗ . 144

8.1 OCaml shim for execution of ITree samplers. The destructor ‘observe’ (not to
be confused with the cpGCL command of the same name) unfolds the structure
of ITree t. 152

8.2 Dueling coins (left) and n-sided die (right) cpGCL programs. 153
8.3 Sampling from Bernoulli(exp(−γ)), where 0 ≤ γ ≤ 1 157
8.4 Sampling from Bernoulli(exp(−γ)), where 0 ≤ γ 157
8.5 Sampling from LapZ. Modifed variables: k, a, i, b, lp, d, v, il, x, y, and

c. Variables lp and il (“loop” and “inner loop”) are used for control fow.
See [CKS20] for explanation and proof-of-correctness of the sampling algorithm.158

8.6 Sampling from NZ(µ, σ2). Note that the entropy usage depends only on σ
and not µ. Modifed variables: k, a, i, b, lp, d, v, il, x, y, c, ol, z. Variable
ol (“outer loop”) is used for control fow. See [CKS20] for explanation and
proof-of-correctness of the sampling algorithm. 159

8.7 Hare and tortoise cpGCL program (left) with accuracy and entropy statistics
(right). 160

https://github.com/bagnalla/zar/blob/main/gaussian.v#L34
https://github.com/bagnalla/zar/blob/main/gaussian.v#L62
https://github.com/bagnalla/zar/blob/main/gaussian.v#L127
https://github.com/bagnalla/zar/blob/main/gaussian.v#L214

11

1 Introduction
What is to be done?

Nikolai Chernyshevsky

This dissertation presents a formally verifed compiler pipeline from discrete

probabilistic programs with unrestricted loops and conditioning to executable samplers in

the random bit model that are formally guaranteed to generate samples from the true

posterior distribution of their source programs. A novel intermediate representation for

probabilistic programs – choice-fx trees – enables biased probabilistic choices in source

programs to be translated to the random bit model via fair coin-fipping schemes. A novel

proof framework called Algebraic Coinductives (AlgCo) based on concepts from domain

theory, notably that of algebraic CPOs, enables convenient formal reasoning about

coinductively encoded samplers.

1.1 Motivation and Purpose

Probabilistic programming has arisen in recent years as a popular tool for

probabilistic modeling and Bayesian inference (i.e., learning from data). Probabilistic

programming languages [WW11, GMR+12, CRN+13, SM16, CGH+17, vdMPYW18,

BCJ+19, CTSLM19, SCS+19, SRM21, CMS22] (PPLs) provide a convenient high-level

notation for modeling probabilistic processes as programs with random sampling and

conditioning on observed data, such that data-fow dependencies between variables

encode the causal relationships between them. Among the kinds of models expressible by

PPLs are probabilistic graphical models (PGMs), widely used in machine learning and

statistics with applications in information extraction [PD07], speech recognition [Bil04],

medical diagnosis [KN15], computer vision [Isa03], coding theory [RU08], gene/protein

modeling [Fri04], social network analysis [FNSB15], and more [KF09].

12

Unlike conventional programs whose semantics is typically given as sets of possible

executions, probabilistic programs (PPs) denote probability distributions over program

states. The distribution denoted by a probabilistic program is called its posterior

distribution, and calculating the posterior of a probabilistic program is called inference.

PPLs automate inference by compiling programs to Markov Chain Monte Carlo

(MCMC) samplers [Gey11, HTM17, CGH+17] or to other specialized

representations [HMB19, HdBM20] for inference. Similarly, systems like

Pyro [BCJ+19, WHR21] use techniques for semi-automated inference. Automation helps

to separate concerns: the programmer specifes a probabilistic model in a convenient

high-level notation, and the inference engine takes care of the details of calculating the

posterior distribution. Exact calculation of the posterior, however, is often intractable

(exact inference is NP-hard in general [Coo90]), so PPLs typically support sampling from

this distribution to enable approximate inference via Monte Carlo methods [RK16].

Unfortunately, bugs in inference engines are especially difficult to detect and

diagnose [DLHM18, DZHM19]. Attempts at empirical validation are unlikely to detect

small biases and low-probability error conditions. The standard belief propagation

algorithm for inference may converge to the wrong solution or fail to converge at

all [YFW03], and MCMC samplers may falsely appear to have converged to the desired

stationary distribution (known as “pseudo-convergence”) [Gey11]. Even the

straightforward task of uniform sampling is notoriously susceptible to “modulo

bias” [Sec20], leading to violations of cryptographic

guarantees [Ngu04, AFG+14, Tho13, BH19, ANT+20] due to improper use of the

modulus operator to restrict the range of the uniform distribution. It is therefore difficult to

have confdence in the results produced by probabilistic programming systems.

In this dissertation, we present Zar (Bulgarian for “die”): a formally verifed

compiler from the conditional probabilistic guarded command language

13

1 primes (p : Q) :=
2

3

{ b ← true } [p] { b ← false };
while b do

4 h ← h + 1;
5

6

{ b ← true } [p] { b ← false }
end;

7 observe h is prime

(a) ‘primes’ cpGCL program with ge-

ometric posterior over the prime num-

bers. 2(b) True posterior over h with p = 3 .

Figure 1.1: Geometric primes program (left) and its posterior distribution over h (right).

(cpGCL [OGJ+18, Kam19]) to proved-correct samplers in the random bit

model [VN51, SFRM20b], in which samplers are provided a stream of independent and

identically distributed (i.i.d.) random bits drawn from a uniform distribution. Samplers

generated by Zar are guaranteed, under reasonable assumptions about the source of

randomness (Section 5.3), to produce samples from the true posterior of their source

programs, and thus provide a foundation for high-assurance sampling and Monte

Carlo-based [RK16] approximate inference. Additionally (Section 8.3), we apply the Zar

compiler backend to verify samplers for discrete uniform distributions. The Zar system is

implemented and fully verifed in the Coq proof assistant.

1.2 Challenges

To understand the challenges, consider the ‘primes’ cpGCL program in Figure 1.1a,

which computes a geometric posterior distribution over the prime numbers as shown in

Figure 1.1b. This program combines three fundamental features complicating inference:

https://github.com/bagnalla/zar/

14

1) nonuniform (biased) probabilistic choice, 2) unbounded loop-carried datafow (a

“non-i.i.d.” loop [OGJ+18, BSB20]), and 3) conditioning. The variable b is drawn from a

Bernoulli distribution with probability p of “heads” (lines 2 and 5). The variable h (with

initial value 0 and updated on line 4) counts the number of heads encountered before

fipping tails. Finally, the terminal program state is conditioned on h being a prime

number (the observe command on line 7).

Eliminating Bias Figure 1.1b shows the posterior of the ‘primes’ program with bias p

specialized to 2
3 . To obtain a sampler in the random bit model, the program must be

transformed into a semantically equivalent one in which all choices have bias 1
2 . However,

probability expressions in cpGCL can be functions of the program state, so reduction of

biased choices is not always possible via direct source-to-source translation (e.g., the

probability expression on line 5 could depend on variable h). To address this state

dependence and the use of nonuniform biases, we develop a new intermediate

representation called choice-fx trees (Section 4.3). We compile cpGCL programs to the

choice-fx representation and debias choice-fx trees to generate samplers in the random

bit model.

Unbounded and Non-i.i.d. Loops The loop in Figure 1.1a is unbounded; it is not

guaranteed to terminate within any fxed number of iterations, and can diverge (though

with probability 0) when only heads are fipped. The tasks of sampling and inference are

greatly complicated by the infnitary nature of unbounded loops, and thus much previous

work on discrete PPs is limited to bounded

loops [CD08, CRN+13, HTM17, HMB19, HdBM20]. Formal reasoning about infnitary

computations requires substantial use of coinduction [Ber06, KS17, HNDV13], which is

notoriously difficult to use in proof assistants like Coq [HNDV13].

15

Moreover, the loop in Figure 1.1a is “non-i.i.d.”; the update of counter variable h on

line 4 induces nontrivial data dependence between iterations of the loop, and consequently

every value of h ≥ 0 occurs with nonzero probability (the posterior has infnite support).

Many interesting probabilistic programs such as the discrete Gaussian (Section 8.4)

exhibit such “loop-carried dependence” [AK87]. Prior work on automated inference of

unbounded loops and conditioning in probabilistic programs has been restricted to the

subclass of i.i.d. loops, i.e., those without loop-carried dependence [BSB20].

Zar compiles the ‘primes’ program to an executable interaction tree

(ITree) [XZH+20] formally guaranteed to produce samples from the geometric posterior

shown in Fig 1.1b when provided uniform random bits from its environment (see

Section 8.2 for empirical evaluation). The coinductive type of ITrees, while suitable for

encoding potentially unbounded processes, is deceptively difficult to reason about

formally. Coq’s built-in mechanism for coinduction is often

insufficient [HNDV13, Chl22]. To facilitate reasoning on coinductive representations of

samplers, we employ concepts from domain theory such as Scott-continuity [AJ94] and

algebraic CPOs [Gun92] (covered in detail in Chapters 6 and 7).

Correctness of Samplers Verifed compilers of conventional programming languages

like C have somewhat well understood correctness guarantees (though see [PA19]).

CompCert [Ler09], for example, uses a simulation argument to prove a form of behavioral

equivalence of source and target programs. Writing the specifcation of a compiler for a

PPL is less straightforward. What does “behavioral equivalence” even mean when the

result of the compilation pipeline is a probabilistic sampler that depends on a source of

randomness?

A key idea of this dissertation is that the proof of correctness of a PPL compiler is

essentially a reduction: as input, it takes a source of randomness (in our case, uniformly

distributed random bits) and as output it produces a sampler on the posterior distribution

16

generated by the conditional weakest pre-expectation semantics (cwp) of the program

being compiled. We thus reduce the problem of sampling a program’s posterior

distribution to the comparatively simpler problem of sampling uniformly random bits.

Making this reduction work formally means precisely characterizing the input source of

randomness and the distributional correctness of the output sampler. We specify the input

randomness in Section 5.1, drawing on the classic theory of uniform distribution modulo

1 [Wey16, KN12, BG22]. We characterize distributional correctness by proving that our

samplers satisfy an equidistribution theorem (Section 5.3) with respect to the cwp

semantics of source programs.

Algebraic Coinductives In the course of this work, we found the available options for

reasoning about coinductive types (e.g., Coq’s built-in cofx tactic and the the well-known

paco [HNDV13] library) to be insufficient for the desired goal of defning and reasoning

about weakest pre-expectation semantics on coinductive samplers. A technique frst

developed to overcome these difficulties (see Section 6.1) for the special case of

coinductive binary trees has been generalized in domain-theoretic terms to a novel proof

framework called Algebraic Coinductives (AlgCo), providing a practical system for

reasoning about continuous mappings over a wide class of common coinductive types

(those which form algebraic CPOs) including conats (Section 6.6), streams (Section 6.7),

and infnitary tries (Section 6.8).

1.3 Contributions

This dissertation makes the following contributions:

Concept. We implement Zar: a formally verifed compilation pipeline from discrete

probabilistic programs with unbounded loops and conditioning to proved-correct

executable samplers in the random bit model, exploiting the key idea that discrete

distributions can be reduced to unbiased coin-fipping schemes [KY76, SFRM20b],

17

culminating in the sampling equidistribution theorem (Theorem 10) establishing

correctness of compiled samplers. The entire system is fully implemented and verifed in

the Coq proof assistant. To overcome difficulties in coinductive reasoning about compiled

samplers in Coq, we develop the novel proof framework AlgCo (Algebraic Coinductives),

based on the domain-theoretic notion of algebraic CPO.

Technical. The Zar system includes:

- a formalization of cpGCL and its associated cwp semantics [OGJ+18] (Sections 3.4

and 3.5),

- an intermediate representation for cpGCL programs called choice-fx trees

(Section 4.1), enabling optimizations and essential program transformations (e.g.,

elimination of redundant choices and reduction to the random bit model in

Section 4.4),

- a compiler pipeline (Section 4.3) from cpGCL to ITree samplers (Section 4.5),

- statement and proof of a general result establishing the correctness of compiled

samplers with respect to the cwp semantics of source programs, based on the notion

of equidistribution (Chapter 5), and

- a Python 3 package for high-assurance uniform sampling (Section 8.3) as a thin

wrapper around proved-correct samplers extracted from Coq.

In addition, we provide an introduction to the basic concepts and proof principles of

the AlgCo framework (Chapter 6), including illustrative applications:

- a framework for lazy coiteration with conats (Section 6.6),

- a library for reasoning about coinductive streams with application to a formally

verifed sieve of Eratosthenes (Section 6.7),

18

Figure 1.2: Zar pipeline diagram showing (1) the compiler from cpGCL to CF trees

(Section 4.1), (2) debiasing of probabilistic choices (Section 4.3), (3) generation of

interaction trees from CF trees (Section 4.5), and (4) extraction for efficient execution in

OCaml and Python (Chapter 8).

- a verifed regular expression library based on coinductive tries (Section 6.8), and

- real-valued weakest pre-expectation semantics on coinductive encodings of

sampling processes in the random bit model (Chapter 7).

Evaluation. We perform empirical validation of illustrative examples (Chapter 8)

including comparison with FLDR [SFRM20a] and OPTAS [SFRM20b] uniform samplers

(Section 8.3) and inference of a posterior over a simulated race between a hare and

tortoise (Section 8.5, inspired by the continuous variant in [SK20, Section 1]).

Source Code. Embedded hyperlinks in the PDF point to the underlying Coq sources,

hosted publicly on Github in the Zar and AlgCo repositories. At the time of writing, the

entire Zar system (including a substantial portion of the AlgCo library) contains 5629

lines of specifcation and 9339 lines of proof script. The Python 3 package for

high-assurance uniform sampling is available in the Zar repository.

Axiomatic Base. We extend the type theory of Coq with excluded middle,

constructive indefnite description, and functional extensionality [Cha17, Cha10]

(Section 3.1). We also use Coq’s axiomatic real number library and extensionality axioms

(e.g., Axiom 4 in Section 6.6) for coinductive types (see Section 6.6.1 for discussion).

https://github.com/bagnalla/zar/
https://github.com/bagnalla/zar/
https://github.com/bagnalla/algco/
https://github.com/bagnalla/zar/tree/main/python/zar

19

1.4 Limitations

Zar supports only discrete probabilistic cpGCL programs (which however are

naturally suited for many applications [HdBM20]) that terminate either absolutely or

almost surely (i.e., with probability 1). Probabilities appearing in cpGCL programs must

be rational numbers. We provide no guarantees regarding time/space or entropy usage

(number of random bits required to obtain a sample), although we observe near

entropy-optimality in some cases (cf. Section 8.3). We verify only the compiler pipeline.

Verifcation of cpGCL programs using a program logic that is sound with respect to the

cwp semantics is beyond the scope of this work. Proofs on cpGCL programs with respect

to their cwp semantics can, however, be composed with our compiler correctness proofs

(Theorems 3, 10) to obtain end-to-end guarantees on generated samplers. Directions for

future work to overcome these limitations include extending cpGCL to support sampling

from a continuous uniform random variate over the unit interval, and compilation to

verifed Markov chain Monte Carlo (MCMC) sampling processes.

20

2 Background
If the language is incorrect ... the

people have nowhere to put hand and

foot.
Confucius

This chapter provides necessary background for understanding the contributions of

this dissertation. We begin with a brief overview of probabilistic programming languages

(PPLs) (Section 2.1) and inference (Section 2.2). We then introduce our PPL of focus –

the conditional probabilistic guarded command language (cpGCL) (Section 2.3) – and its

conditional weakest pre-expectation (cwp) semantics (Section 2.4), with extra care given

to understanding the semantics of loops (Section 2.5). We give a brief overview of the

random bit model (Section 2.7) for random sampling processes and the classic theory of

uniform distribution modulo 1 (Section 2.8) upon which the main equidistribution

theorem (Theorem 10) is based. We describe the category-theoretic interpretation of the

principles of induction and coinduction (Section 2.9) to provide clarity to the issues

addressed in Chapter 6. We give a brief account of the interaction tree library of Xia et

al. [XZH+20] (Section 2.6) which Zar uses to implement executable sampling semantics

of probabilistic programs. Finally, we provide the necessary background on basic order

and domain theory (Section 2.10) and measure theory (Section 2.11).

2.1 Probabilistic Programming Languages

Probabilistic programming languages (PPLs) are special-purpose programming

languages with built-in support for randomization and probabilistic reasoning. PPLs

include standard features from conventional programming languages such as datatypes,

variables, conditionals, loops, and recursion, but also provide support for two additional

basic constructs:

21

1. drawing values at random from probability distributions

2. conditioning on observed values of program variables.

PPLs such as Church [GMR+12], Anglican [TvdMYW16], Infer.NET [WW11],

IBAL [Pfe01], WebPPL [GS14], Pyro [BCJ+19], and Stan [CGH+17] represent a variety

of features and implementation details but all share the same basic notions of drawing

random values from a family of built-in probability distributions (e.g., Bernoulli, Uniform,

Gaussian, etc.) and conditioning on observations. Programs written in these languages

(“probabilistic programs”) describe generative models of random processes, encoding

joint probability distributions over program variables. In general, the variable types

supported may be discrete (e.g., Booleans and integers) or continuous (e.g., real or

complex numbers).

2.2 Inference

Probabilistic programs are often used in scientifc contexts to perform Bayesian

inference [McE20]. In the Bayesian paradigm, a probabilistic program is viewed as a

model of a real-world data generating process. The model’s variables are separated into

two classes: observed variables (for which samples can be gathered from the real-world

process), and unobserved variables (hidden variables suspected by the programmer to

have causal infuence on the observed variables). The model is factored into two

components:

1. A prior probability distribution over the unobserved variables (often called the

parameters) representing prior belief about the values they could hold, and

2. a likelihood function – a family of distributions ranging over possible values of the

parameters, for which the programmer expects some choice of parameters will

provide an accurate model of the real-world distribution.

https://Infer.NET

22

In the absence of any prior knowledge about likely values of the parameters, the prior

distribution is typically chosen to maximize entropy (i.e., minimize information) over

some class of suitable distributions (the principle of indifference). The model is then

conditioned on a set of particular values for the observed variables, inducing an updated

posterior distribution over the model’s parameters. The act of updating the prior with

observations to produce a posterior is called the Bayesian update step, and it can be

repeated multiple times with each new posterior becoming the prior for the next update

step. Inferring the posterior distribution over a model’s parameters via Bayesian update

constitutes a principled mathematical method for learning from data.

A common misconception is that Bayesian inference is defned solely by its use of

Bayes’ rule (explained in the following section) for performing inference. While true that

Bayes’ rule is the fundamental tool of probability theory for performing the Bayesian

update step, the feature that markedly distinguishes the Bayesian paradigm as “Bayesian”

is its interpretation of probabilities (e.g., the prior and posterior probabilities on parameter

values) as “degrees of certainty” or “belief”, in contrast to the frequentist interpretation of

probability as the limit of relative frequency over n trials as n goes to +∞.

2.2.1 Bayes’ Rule

In this section we derive Bayes’ rule from frst principles of probability theory and

provide an intuitive explanation of the rule.

Recall the defnition of the conditional probability of event A given B [PGJ16]:

P(A, B)
P(A | B) = . (2.1)

P(B)

Also recall that a joint probability over A and B can be factored via the chain rule of

probability into a marginal P(A) and conditional probability P(B | A):

P(A, B) = P(A)P(B | A). (2.2)

23

Rewriting by equation 2.2 in the numerator of the right-hand side of equation 2.1, we

obtain Bayes’ rule:
P(B | A)P(A)

P(A | B) = .
P(B)

When using Bayes’ rule, it is helpful to think of event A as the “hypothesis” and

event B as the “evidence.” This naming suggests the rule’s utility; it is usually easy to

calculate the probability P(B | A) of the evidence B given a hypothesis A, but more

difficult to calculate the probability P(A | B) of hypothesis A given evidence B. Bayes’

rule allows us to calculate the latter in terms of the former.

When performing Bayesian inference, we begin with some prior distribution P(A)

over hypotheses A, and we wish to update it in light of new evidence B to obtain a

posterior distribution P(A | B). Using Bayes’ rule, we can perform this update in terms of

the likelihood P(B | A) (how well evidence B is explained by hypothesis A) relative to R
P(B) (i.e., P(B | A) dA – how likely B is over all possible hypotheses).

2.2.2 Exact Inference

Application of Bayes’ rule by hand is impractical in most cases, and while it may in

principle be automated over a graphical model such as a Bayesian network, the number of

terms in the calculation scales exponentially in the number of nodes in the graph, so that

approach quickly becomes intractable for large models. Standard algorithms improve

upon this but remain exponential in the treewidth of the network [CD08]. Some efforts

have been made toward improving performance of exact inference in particular

circumstances (see, for example, Holtzen et al. [HMB19] in which exact inference is

performed efficiently by weighted model counting from binary decision diagram (BDD)

representations of loop-free programs), but state-of-the-art techniques for posterior

inference are typically based on methods of approximation [YFW03, Gey11, BCJ+19].

24

2.2.3 Approximate Inference

When exact inference is infeasible we may resort to methods for approximately

estimating the posterior, or more commonly, the expected value of some function of the

posterior. Such approximation methods are often based on the idea of generating many

samples and computing an empirical estimate from them (as we describe in the following

paragraphs), although some (such as the belief propagation algorithm [YFW03]) do not

require any random sampling.

Ordinary Monte Carlo The basic framework for sampling-based approximate

inference is Ordinary Monte Carlo (OMC), or “i.i.d. Monte Carlo” [BGJM11]. OMC is

applicable whenever independent and identically distributed (i.i.d.) samples can be

generated from the posterior and is thus quite general because it does not require any

special knowledge of the underlying random process.

Suppose that we have a function g : A → R∞
≥0 over sample space A for which we wish

to compute the expected value µg : R∞
≥0 with respect to a given posterior distribution D

over values a : A. That is, we wish to compute the following quantity:

µg = Ea∼D[g(a)].

If exact calculation of µg is not possible (due, e.g., to complexity or simply to

opaqueness of the model), we may settle to instead calculate the empirical mean µ̂g
n from n

samples {x1, ..., xn} drawn i.i.d. from D:

nX
n 1
µ̂g = g(xi). n

i=1

We can also compute the empirical variance σ̂ n
2 using the same set of samples

{x1, ..., xn}: X1 n
nσ̂2

n = (g(xi) − µ̂g)2 .
n

i=1

25

n σ
√̂
 nFrom which we can obtain a 95% confdence interval for µg of µ̂g ± 1.96 · n . Note

that OMC sampling follows the square root law; the accuracy of µ̂g
n is inversely

proportional to the square root of n, and thus every additional signifcant fgure of

accuracy requires a hundred-fold increase in the number of samples [Gey11].

The samplers generated from probabilistic programs in this dissertation can be used

to perform OMC approximate inference. The equidistribution proved in section 5.3 proves

that OMC using a compiled sampler correctly approximates the posterior distribution of

the probabilistic program from which it was compiled.

2.3 The Conditional Probabilistic Guarded Command Language

Our object language is the conditional probabilistic guarded command language

(cpGCL), introduced by Olmedo et al. [OGJ+18] as an extension of pGCL [MM05] to

support conditioning. cpGCL lacks many advanced features of industrial strength PPLs

(e.g., the “guide” functions of Pyro [BCJ+19]) but supports the basic operations of

probabilistic choice and conditioning on observations, making it an ideal core probabilistic

calculus for formalization. The syntax of cpGCL is given by the following grammar:

Figure 2.1: cpGCL syntax

C := skip no-op
| abort abort execution
| x := E assign value of expression E to variable x
| observe(G) condition on predicate G
| C; C sequential composition
| ite(G){C}{C} conditional branching
| {C}[p]{C} probabilistic choice
| while(G){C} repetition

26

The cpGCL extends Dijkstra’s classic guarded command language [Dij75] with the

following constructs:

1. Probabilistic choice: Given expression e : Σ → Q (where Σ is the type of program

states) such that e σ ∈ [0, 1] for all σ : Σ, command ‘{ c1 } [e] { c2 }’ executes

command c1 with probability e σ, or c2 with probability 1 − e σ in current state σ.

2. Conditioning: Given predicate G : Σ → B on program states, command

‘observe (G)’ conditions the posterior distribution of the program on P.

The ’abort’ command is shorthand for a divergent loop, e.g., ’while (λ . true) {skip}’.

2.4 Conditional Weakest Pre-Expectation Semantics

We follow Olmedo et al. [OGJ+18] in interpreting cpGCL programs using

conditional weakest pre-expectation (cwp) semantics, a quantitative generalization of

weakest precondition semantics [Dij75]. Samplers produced by Zar are proved correct

with respect to the cwp semantics of source programs.

Defnition 1 (Expectation). An expectation is a function f : Σ → R∞
≥0 mapping program

states to nonnegative reals or +∞.

The cwp semantics interprets programs as expectation transformers: Given a

post-expectation f : Σ → R∞
≥0 and program c : cpGCL, the weakest pre-expectation

wp c f : Σ → R∞
≥0 is a function mapping program states σ : Σ to the expected value of f

over terminal states of c given initial state σ. The name “weakest pre-expectation” comes

from being the quantitative analogue of the classic notion of weakest precondition in

predicate transformer semantics.

Expectations can be seen as a quantitative generalization of predicates in the

following sense: given a predicate Q : Σ → B, the weakest pre-expectation of a program C

with respect to post-expectation [Q] (Iverson bracket notation – see Table 2.1) maps state

27

σ : Σ to the probability that C, when executed from initial state σ, terminates in a fnal

state in which Q holds. Thus, cwp semantics can be used to answer probabilistic queries

about the execution behavior of programs. For more background on weakest precondition

and its generalization to weakest pre-expectation semantics, see [Kam19, Chapters 2-4].

Table 2.1: Table of notations used in the defnition of wp and wlp semantics.

Notation Defnition

0 λσ. 0 The constant function at 0.

1 λσ. 1 The constant function at 1.

f [x/E] λσ. f (σ[x/Eσ]), where σ[x/Eσ] denotes the update of variable x in

state σ to the result of evaluating expression E in σ.

[P] λσ. if P σ then 1 else 0 Indicator function for predicate P.

f + g λσ. f σ + g σ Pointwise addition of functions.

f · g λσ. f σ · g σ Pointwise multiplication of functions.

f
g

f σ
λσ. g σ Pointwise division of functions.

Table 2.2 gives the defnition of wp, as well as a “liberal” variant of wp called the

weakest liberal pre-expectation (wlp), by induction on the structure of cpGCL programs.

Both semantics are extended to support observe commands in anticipation of how they

will be used in the conditional extension of wp.

Most of the cases for wp (wlp) are straightforward. Skip leaves the input function f

unchanged. Abort yields the function constant at 0 (1) (see Example 1 for explanation).

Observe yields the function that checks if predicate G holds in the input state, deferring to

f when true and the constant 0 when false. Composition of commands corresponds to

composition of expectation transformers. Conditionals, in a manner similar to

observations, defers to either the expectation transformer of C1 when G is true in the input

28

Table 2.2: Weakest pre-expectation (wp) and weakest liberal pre-expectation (wlp)

semantics by induction on the syntax of cpGCL.

C wp C f : Σ → R∞
≥0 wlp C f : Σ → R≤1

≥0

skip f f

abort 0 1

x := E f [x/E] f [x/E]

observe (G) [G] · f [G] · f

C1; C2 wp C1 (wp C2 f) wlp C1 (wlp C2 f)

ite (G) {C1} {C2}

{C1} [p] {C2}

while (G) {C0}

[G] · wp C1 f + [¬G] · wp C2 f

p · wp C1 f + (1 − p) · wp C2 f

sup Fn 0, where

F X = [G] · wp C0 X + [¬G] · f

[G] · wlp C1 f + [¬G] · wlp C2 f

p · wlp C1 f + (1 − p) · wlp C2 f

inf Fn 1, where

F X = [G] · wlp C0 X + [¬G] · f

state, or to that of C2 when G is false. Probabilistic choices yield a weighted sum of the

two sides, weighted by parameter p. Lastly, the semantics of loops is given as the least

(greatest) fxed point of a monotone functional (see more in-depth discussion on the

semantics of loops in Section 2.5).

The fundamental difference between wp and wlp is as follows:

• wp encodes total program correctness. When posing a query over predicate Q

using wp, we are asking “what is the probability that the program terminates and does so

in a state satisfying Q?”. Divergent execution paths (those which never terminate)

contribute nothing to the weakest pre-expectation.

• wlp encodes partial program correctness. When posing a query over predicate Q

using wlp, we are asking “what is the probability that the program either diverges or

29

(a) Without conditioning (b) With conditioning.

Figure 2.2: Diagrams illustrating probability masses of sets of program executions from

a fxed initial state, with (right) and without (left) conditioning. The region labeled T

represents the mass of executions that terminate in some fnal state. D is the mass of

divergent executions (thus, the mass of T ∪ D is equal to 1). P ⊆ T corresponds to the

subset of terminating executions that result in a state satisfying predicate P, and C ⊆ T to

the subset of executions that are consistent with all observations in the program.

terminates in a state satisfying Q?”. Divergent paths contribute their full probability mass

to the weakest liberal pre-expectation.

That is, wp and wlp differ primarily in how they deal with nontermination.

Furthermore, wlp is defned only on bounded expectations f : Σ → R≤

≥
1
0 (bounded above

by 1) as it is only meaningful for probabilities. It follows that wp and wlp coincide for

bounded expectations on programs that always terminate (whether absolutely or with

probability 1).

To aid in understanding wp and wlp, consider the following scenario. Suppose that

we have some program C, initial state σ, and predicate P. Running C from initial state σ

terminates with some probability p and diverges the rest of the time with probability

1 − p. Some portion of the terminating executions result in fnal states satisfying P. The

diagram on the left of Figure 2.2 illustrates this situation, with the area of each region

representing the probability mass associated with it. wp C [P] σ can be understood as

30

computing the area of the region labeled P (relative to the entire space T ∪ D, a point

which is immaterial for now since T ∪ D has mass 1), whereas wlp C [P] σ computes the

combined area of P ∪ D.

The conditional weakest pre-expectation (cwp) of post-expectation f : Σ → R∞
≥0 with

respect to program c : cpGCL is then defned following the approach

of [OGJ+18, Kam19]:

Defnition 2 (cwp). For command C : cpGCL and expectation f : expectation,

wp C f
cwp C f : Σ → R∞

≥0 , .
wlp C 1

To understand the rationale behind cwp, consider the diagram on the right in Figure

2.2 which generalizes the situation from before to include an additional region C

corresponding to program executions with fnal states satisfying all observation predicates

in the program. Now, instead of computing the probability of P relative to all executions,

we want to compute the probability of ending up within P while also satisfying all

observations, relative to all observation-consistent executions (which includes divergent

executions since they do not contradict any observations). That is, we want to compute
µ(P ∩ C)

(where µ(X) denotes the probability mass of set X of executions), which is
µ(C ∪ D)
exactly the defnition of cwp (the RHS of Defnition 2).

2.5 Semantics of Loops

The semantic rules for loops can be derived by noting that we expect loops to be

semantically equivalent to their one-step unrollings, which can be expressed (in the case

of wp) with the following equation ranging over expectations f :

wp (while (G) {C}) f = wp (ite (G) {C; while (G) {C}} {skip}) f .

https://github.com/bagnalla/zar/blob/main/cwp.v#L168

31

We can arrange for this equation to hold by defning the semantics of ‘while (G) {C}’

to be equal to the least fxed point of the functional F given by:

F X = wp (ite (G) {C; X} {skip}) f

= [G] · wp C X + [¬G] · f .

We note that the space of expectations Σ → R∞
≥0 is a CPO (Defnition 12) with respect

to the standard ordering on R∞
≥0 lifted pointwise. Thus, we can defne the following

ω-continuous functional F : (Σ → R∞) → Σ → R∞
≥0 ≥0:

F g = [G] · wp C g + [¬G] · f

whose continuity follows readily from that of wp which is proven by routine induction

(see [Kam19, Theorem 8.7]). Then, by Kleene’s fxed-point theorem (e.g., [Gun92,

Theorem 4.12]), we have that there exists a least element µF such that:

µF = F (µF)

Or, with the defnition of F expanded on the RHS:

µF = [G] · wp C µF + [¬G] · f .

That is, µF is the least fxed point of F. Most presentations of the wp semantics (e.g.,

in [Kam19, Table 4.1]) give the semantics of loops in terms of this fxed-point

construction. However, as a further corollary of Kleene’s theorem, µF can be obtained by

taking the supremum of the chain of approximations resulting from iterative application of

F starting from the bottom element 0.

µF = sup (Fn 0).

The story is similar for wlp, but we instead iterate F from the top element 1 (since the

co-domain is now limited to [0, 1]) to obtain a descending chain, which corresponds to

taking the greatest fxed point of F.

32

Example 1 (Divergent loop). Consider the weakest pre-expectation of the canonical

infnite loop ‘while (λ . true) {skip}’ with respect to post-expectation f . Unfolding the frst

few iterations of the ω-chain:

F0 0 = 0

F1 0 = F (F0 0) = [λ . true] · wp skip 0 + [λ . false] · f = 0

F2 0 = F (F1 0) = ... = 0

...

We quickly see that since the guard condition always evaluates to true the chain

remains constant at 0 and therefore has supremum equal to 0. The situation is similar for

the weakest liberal pre-expectation, with the chain being constant at 1 and infmum equal

to 1.

This example illustrates the fact that the abort command is superfuous and could be

eliminated without any loss in expressive power, as it is equivalent under both wp and wlp

to while (λ . true) {skip} or any other loop that diverges with probability 1.

The wp semantics of loops is not computable in general (and thus cannot be fully

automated), but there are some special cases in which it can be computed. Loosely

speaking, we say a loop is i.i.d. whenever 1) the probability of exiting the loop is the same

after every iteration, and 2) there is no data fow across iterations of the loop (i.e., no

loop-carried dependence).

Defnition 3 (i.i.d. loop). A loop with guard condition G : Σ → B and body C : cpGCL is

said to be independent and identically distributed (i.i.d.) with respect to wp semantics

(and mutatis mutandis for wlp semantics) whenever the following condition holds for all

states σ : Σ under which Gσ = true, expectations f : Σ → R∞
≥0, and indices i : N:

wp unrolli+1 f σ = wp C [G] σ · wp unrolli f σ + wp C ([¬G] · f) σ

33

where unrolln is the sequence of fnite unrollings of the loop defned by:

unroll0 = ite (G) {abort} {skip}

unrolln+1 = ite (G) {C; unrolln} {skip}.

We say that a cpGCL program C is i.i.d. whenever every loop in C is i.i.d. with

respect to both wp and wlp. Note that this notion of i.i.d.-ness is purely semantic, asserting

that the wp semantics of each iteration of the loop is related to the wp semantics of the

previous iteration in a regular way. It is possible to characterize the i.i.d. condition

conservatively as a syntactic property (see, for example, [Kam19, Defnition 5.16]),

however, it may reject some loops that are semantically i.i.d.

Example 2 (Non-i.i.d. loop). To see a loop that is not i.i.d., consider the following

program that counts how many times in a row a fair coin fips true:

Figure 2.3: Loop counter cpGCL program

i := 0;
{ x := true} [1] { x := false }2

while (x = true) {
i := i + 1;
{ x := true} [1] { x := false }2

}

The probability of exiting the loop on each iteration is constant (1
2), but variable i

depends on its own value from previous iterations (a loop-carried dependence), and thus

the loop (and the program as a whole) is not i.i.d..

The wp semantics of loops in the general case requires calculation of the supremum

of an infnite chain of expectations, which in practice amounts to calculation of an infnite

34

sum, which is clearly not always computable [Chi65]. However, when the loop is i.i.d.,

the supremum of its corresponding chain can be computed via a closed-form solution

(namely that of the limit of a geometric series), rendering wp (and wlp and therefore cwp)

fully automatable. However, as we can see from the preceding example, the i.i.d.

condition totally precludes the use of counters and accumulators, and is therefore an

unfortunately draconian restriction. Many interesting probabilistic programs depend on

the use of counters and accumulators, so we must be prepared to handle them as well.

The class of i.i.d. programs, however, is not completely vacuous. Consider the

following i.i.d. program in which a fair coin is simulated using a biased coin with bias

parameter p ∈ [0, 1]. We are interested in the posterior distribution over variable x

(expecting it to be that of a fair coin).

Figure 2.4: Simulating a fair coin from one with bias p

x := false;
y := false;
while (x = y) {
{ x := true; { y := true } [p] { y := false } }

[p]
{ x := false; { y := true } [p] { y := false } }

}

Or in equivalent pseudo-code:

x, y := true, true
while (x = y) {

x, y ← fip(p), fip(p)
}

The probability of terminating the loop is constant at 2p(1 − p), and there is no

cross-iteration datafow because x and y are both drawn from a fxed distribution at every

35

iteration (Bernoulli with parameter p), so it is clearly i.i.d. Now let us consider how we

might analyze the posterior distribution over x.

In particular, to answer the query “what is the probability of x = true?”, it suffices to

add up the probabilities of all possible executions that lead to terminal states in which

x = true. One such execution is obvious: when the frst iteration of the loop results in

x = true and y = false and so immediately exits with x = true. This occurs with

probability p(1 − p). Another possibility is that the frst iteration ends with x = y

(occurring with probability p2 + (1 − p)2) and then terminates with x = true and y = false

in the second iteration, an execution thus having overall probability

(p2 + (1 − p)2) · 2p(1 − p). Another is that the loop terminates after the third iteration, and

another after the fourth iteration, and so on. Clearly, there are infnitely many such

execution paths, each corresponding to a different number of iterations of the loop, all

with non-zero probability.

Let r denote the probability in any iteration of repeating the loop (r = p2 + (1 − p)2),

and a the probability of exiting the loop in a state satisfying the query condition

(a = p(1 − p)). Then, the probabilities described above can be written as:

2 3 4a, ra, r a, r a, r a, ...

P iand the total probability (yielding the fnal answer to our query) is given by i ar , a
a

geometric series with frst term a and common ratio r, converging to in the limit
1 − r

provided that |r| < 1 (which here corresponds to having a non-zero probability of exiting

the loop). Given that a and r are both readily computable functions of p, we can easily

compute the posterior over x:

a p(1 − p) 1
= = (by algebra)

1 − r 1 − (p2 + (1 − p)2) 2

verifying that the program indeed simulates a fair coin regardless of the bias parameter

p ∈ [0, 1].

36

The reasoning employed above can be extended to the more general case of

computing the pre-expectation of an i.i.d. loop with respect to some post-expectation

f : Σ → R∞
≥0, leading to the following modifed rule for the wp semantics of loops:

wp C ([¬G] · f)
wp (while (G) {C}) f = [G] · + [¬G] · f

1 − wp C [G]

where wp C ([¬G] · f) (the pre-expectation of f with respect to C, weighted by the

probability of exiting the loop) corresponds to the initial term a in the geometric sum and

wp C [G] (the probability of repeating the loop) to the common ratio r. In light of this

view, i.i.d. loops may just as well be called geometric loops. The expression

wp C ([¬G] · f) can be understood as the unnormalized pre-expectation of C with respect

to f , and the expression 1 − wp C [G] as the normalization constant of the loop (constant

as it does not depend on f).

For one last example, consider the following card game (from [McE20, Chapter 2]):

Example 3 (Black and white cards). Suppose you have a deck of three cards. One card is

black on both sides, the second is white on both sides, and the third is black on one side

and white on the other. Now suppose all three cards are placed into a loose container and

shuffled, and one is chosen at random and placed on a table. The side facing up is black.

What is the probability that other side is also black?

We can model the game with the following pseudocode program (where B stands for

black and W for white):

x, y ∼ uniform [(B, B), (W, W), (B, W)];
{ front := x; back := y } [1] { front := y; back := x };2

observe (front = B)

Variables x and y, denoting the two faces of the card, are selected uniformly at

random from the three possibilities (B, B), (W, W), and (B, W). We fip a fair coin to

determine which of the two sides is facing up, and observe that the front side is B. Since

37

the cpGCL presented here does not directly support the uniform operation (although our

formalization in Section 3.4 does), we can implement the uniform choice with an i.i.d.

loops as follows:

card game : cpGCL :=

x := W; y := B;
while (x = W ∧ y = B) {
{ x := B} [1] { x := W };2

{ y := B} [1] { y := W }2

};
{ front := x; back := y } [1] { front := y; back := x };2

observe (front = B)

We can then calculate (using the special rule for i.i.d. loops) the probability that the

downward-facing side is also black (where σ∅ denotes the empty initial state):

2
Pr(back = B) = cwp card game [back = B] σ∅ = .

3

2.6 Interaction Trees

Interaction trees (ITrees) were introduced by Xia et al. [XZH+20] as a

general-purpose coinductive data structure for defning effectful recursive programs that

interact with their environment. The ITree library [Xia23] provides a suite of combinators

for their construction and a set of formal principles for reasoning about their equivalence

(bisimilarity) in Coq. By “effectful” programs, we mean programs that are “impure” in the

sense that they may produce side effects such as printing a message or making changes to

the program state. An interaction tree computation performs such an effect by raising an

event (which may carry data) that is then handled by its environment, possibly providing

data in return. The type of interaction trees is equivalent to the following coinductive type

in Coq:

38

CoInductive itree (E : Type → Type) (R : Type) : Type ,
| Ret : R → itree E R
| Tau : itree E R → itree E R
| Vis : ∀A : Type, E A → (A → itree E R) → itree E R.

The type itree E R is the type of interaction trees with event family E and return type

R. That is, E defnes the kinds of events that may be raised (and handled by the

environment), and R is the type of the eventual value produced by the computation. The

type argument to E determines the type of the environment’s response to the event, e.g., an

event raised of type E A will receive a response value from the environment of type A. An

ITree is built using one of three constructors:

• ‘Ret x’ is a leaf containing value x : R.

• ‘Tau t’ is a “silent step”, performing no computation and moving on to subtree t.

Divergent computations may be encoded as infnite sequences of ‘Tau’ constructors.

• ‘Vis e f ’ represents an an interaction with the environment in which event e : E A is

raised, and the response value x : A from the environment is used to determine the

rest of the computation via ‘ f x’.

Interaction trees can be used to encode potentially non-terminating processes. For

example, the following divergent CoFixpoint produces an infnite sequence of Tau nodes:

CoFixpoint diverge (E : Type → Type) (R : Type) : itree E R ,
Tau (diverge E R).

This is an essential feature for us as we require a way to implement samplers

corresponding to probabilistic programs which may not terminate along all possible

execution paths. Moreover, the ITree library is purely constructive and thus interaction

trees built from the combinators it provides can be extracted to OCaml for efficient

execution (see Chapter 8). In Section 4.5 we show how to generate interaction tree

39

representations of discrete probabilistic programs, and in Section 7.6 we defne (via the

tools of AlgCo developed in Chapter 6) a real-valued expectation semantics on interaction

tree samplers corresponding to the weakest pre-expectation semantics of cpGCL.

2.7 The Random Bit Model

In this dissertation we consider a computational model of randomized processes

called the random bit model [VN51, SFRM20b], within which the basic unit of

randomness is the random bit b ∈ {0, 1}. A sampler operating in the random bit model may

query its environment for a uniformly distributed random bit (i.e., the result of a Bernoulli

trial with p = 1
2) as many times as required to produce its fnal result. Random bits are

generated lazily by the environment on request from the sampling process. All random

bits generated by the environment are independent and identically distributed (i.i.d.).

The random bit model provides a number of advantages over alternatives such as the

algebraic [SFRM20b, Dev86], (sometimes called the real RAM model [Blu98]), in which

the basic unit of randomness is a random variate U uniformly distributed over the unit

interval [0, 1] of real numbers. While analytically convenient, the algebraic model is

typically implemented on physical machines via foating point approximations (e.g., the

rand function provided by the C standard library and similar systems) which induce

sampling error and thus invalidate any theoretical results that hold in the idealized model.

The random bit model does not suffer from this defciency; theoretical results on random

bit model samplers continue to hold in practice (under reasonable assumptions about the

source of randomness – see Section 5.1).

Moreover, the algebraic model assumes access to infnite entropy (the number of

random bits), and is thus insufficient for analysis of the entropy usage of random

processes, which is important in scenarios where randomness is at a premium. The

random bit model, on the other hand, allows for precise accounting of the number of

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

40

random bits consumed by random processes, making it ideal also for analyzing entropy

consumption of samplers. The interaction tree samplers compiled from cpGCL programs

in Section 4.5 operate within the random bit model where the environment is implemented

by a small OCaml shim (Figure 8.1) that lazily generates randomly generated bits in

response to get events raised by samplers.

2.8 Uniform Distribution Modulo 1

The proofs of correctness for random bit model samplers compiled from probabilistic

programs (i.e. the equidistribution theorems) in Chapter 5 assume that the samplers are

provided access to a sequence of uniformly distributed bit streams. The formal

characterization of uniform distribution contained therein borrows heavily from the classic

notion of “uniform distribution modulo 1” (u.d.-1) [KN12, BG22]. In this section we

provide the necessary background on the theory of u.d.-1. Henceforth we drop the

“modulo 1” postfx and consider only real numbers within the interval [0, 1].

Defnition 4 (Uniform distribution). A sequence {xn} : N → [0, 1] of real numbers in the

unit interval is uniformly distributed (u.d.) if for all real endpoints a and b,

N−1X1
lim [xn ∈ [a, b)] = b − a

N→∞ N
n=0

where for x ∈ [0, 1] and A ⊆ [0, 1], ⎧ ⎪1 x ∈ A⎨[x ∈ A] = ⎪⎩0 x < A

A sequence of reals in [0, 1] is u.d. if for all half-open subintervals [a, b) ⊆ [0, 1], the

proportion of reals in the sequence falling within [a, b) converges asymptotically to b − a

(the length of [a, b)). In other words, every half-open subinterval of [0, 1] eventually gets

41

its “proper share” of reals from {xn}. A direct analogue of Defnition 4 would suffice as

our assumption of randomness if the sets of bitstreams we consider in Section 5.2 always

corresponded to half-open intervals. However, since that is not the case, we must

generalize from the class of half-open intervals to the larger class Σ0
1 of effectively open

sets [BG22].

Defnition 5 (Σ0
1). A subset U ⊆ [0, 1] of the unit interval is effectively open, or Σ0

1, if it is S
of the form U = k Ik for some computable sequence {Ik} of (possibly empty) open

intervals with rational endpoints.

Defnition 6 (Σ0-u.d.). A sequence {xn} : N → [0, 1] of real numbers in the unit interval is 1

Σ0
1-u.d. if for all effectively open sets U ∈ Σ0

1,

N−1X1
lim [xn ∈ U] = λ(U)

N→∞ N
n=0

where λ is the Lebesgue measure.

Any concerns that Defnition 6 may be vacuous can be quickly put to rest; almost all

sequences of reals drawn from [0, 1] are Σ0
1-u.d. [BG22]. Moreover, Σ0

1-u.d. has deep

connections to Martin-Löf randomness [ML66] and Schnorr randomness [DG04] (see

Theorem 3 of [BG22]), fortifying our confdence that it is indeed a sensible

characterization of uniform randomness.

One further step of generalization to arbitrary measure spaces is required to obtain a

form of uniform distribution suitable for the equidistribution theorems of this dissertation:

Defnition 7 (µ-u.d.). Let (A, Σ, µ) be a measure space. Then, a sequence of elements an

where each an ∈ A is µ-u.d. if for all measurable sets V ∈ Σ,

N−1X1
lim [an ∈ V] = µ(V).

N→∞ N
n=0

42

Theorems 9 and 10 are expressed in this generalized form in which the measure µ is

induced by the weakest pre-expectation semantics of interaction tree samplers

(Defnition 124) and cpGCL programs (Defnition 2), respectively.

2.9 Induction and Coinduction

This section provides context for understanding the issues addressed by the AlgCo

framework in Chapter 6, and can be safely skipped by readers interested only in the

high-level picture of the Zar system.

Induction Proof assistants like Coq and Agda allow the programmer to defne custom

datatypes via inductive defnitions. For example, the type natlist of lists of natural

numbers can be defned inductively in Coq as follows:

Inductive natlist : Type ,
| nil : natlist
| cons : nat → natlist → natlist.

Intuitively, the type natlist can be interpreted semantically as the smallest collection

of elements closed under the constructors nil and cons. I.e., 1) nil is a natlist, 2) if l is a

natlist then cons n l is a natlist for any n : N, and 3) nothing else is a natlist (see [Kle52,

Chapter 2] for basic treatment of classical inductive defnitions). However, to grasp one of

the fundamental difficulties addressed in this dissertation (in Chapter 6), it is helpful for us

take a category-theoretic [ML13, Pie91] interpretation of inductive types as initial

F-algebras [Hag89]. We specialize our present discussion to the type natlist, but it is

easily generalized to arbitrary inductive defnitions.

We begin by noticing that the defnition of natlist corresponds to a functor

F : Type → Type:

F X = 1 + N × X

where 1 stands for nil and N × X stands for cons).

43

An F-algebra is a type A (the carrier type) together with an operation α : F A → A.

The semantic interpretation of natlist is as the initial object in the category of F-algebras

(where the objects are F-algebras and the morphisms are F-algebra homomorphisms

between them), written µF, with operation [nil, cons] : F µF → µF. The universal

property of µF as the initial F-algebra is expressed by the following diagram:

F f
F µF FA

α[nil,cons]

! f
µF A

The initiality of µF provides a canonical way to construct mappings out of µF into

another type A: defne an F-algebra operation α : F A → A and invoke the initiality

property to obtain the F-homomorphism f : µF → A. This is the canonical elimination

principle for the type natlist, and is exposed to the programmer in Coq by the Fixpoint

mechanism. For example, we can defne the function length : natlist → N by choosing

carrier type N and algebra operation [0, λ n. S n] and invoking the initiality of natlist

(remembering that natlist = µF) to obtain f : natlist → N such that

f ◦ [nil, cons] = [0, λ n. S n] ◦ F f . In Coq:

Fixpoint length (l : natlist) : nat ,
match l with
| nil ⇒ O
| cons l’ ⇒ S (length l’)
end.

Coinduction The categorical interpretation of inductive types helps us to understand a

second class of (less intuitively palatable) user-defned types: coinductives, and the

fundamental differences between them and inductives. Coinductives are the categorical

dual of inductives. That is, everything we have said about inductives applies also to

coinductives, except with the directions of arrows in the diagrams reversed.

44

To illustrate, let us defne the coinductive type natstream of potentially infnite lists

(i.e., streams) of natural numbers in Coq (notice that the only meaningful difference from

natlist is that natstream is declared as coinductive rather than inductive):

CoInductive natstream : Type ,
| nil : natstream
| cons : nat → natstream → natstream.

The intuitive semantic interpretation of natstream is as the greatest collection of

elements closed under the constructors nil and cons. The key difference between natlist

and natstream is that natlist, being the smallest collection closed under its constructors,

contains only fnite lists, whereas natstream, being the largest such collection, also

contains the infnite lists. Indeed, our desire to compute with infnite lists is the primary

reason for passing to the coinductive version of the type. However, the inclusion of

infnite elements is not without cost. To understand, let us take a closer look at the

categorical interpretation of natstream.

An F-coalgebra is a type A (the seed type) together with an operation β : A → F A.

The semantic interpretation of natstream is as the fnal object in the category of

F-coalgebras (where the objects are F-coalgebras and the morphisms are F-coalgebra

homomorphisms between them), written νF, with operation obs : νF → F νF. The

universal property of νF as the fnal F-coalgebra is expressed by the following diagram:

!g
A νF

β obs

F g
F A F νF

The fnality of νF provides a canonical way to construct mappings into νF from

another type A by defning an F-coalgebra operation β : A → F A and invoking the fnality

property to obtain the F-homomorphism g : A → νF. This is the canonical introduction

principle for the type natstream, and is exposed to the programmer in Coq by the

45

CoFixpoint mechanism. For example, we can defne the stream of natural numbers

increasing from initial seed n by:

CoFixpoint nats (n : nat) : natstream ,
cons n (nats (S n)).

The key thing to notice is that in contrast to natlist, the type natstream is not

equipped with an elimination principle for defning mappings from streams to other types

(nor an induction principle for proving universal statements ranging over all streams).

This lack of induction principle for streams and similarly defned coinductive types is

sorely felt when attempting to defne real-valued semantics of coinductive structures (e.g.,

weakest pre-expectation style semantics over coinductive samplers as in Section 7.6), and

is thus the main driving force behind the theory of algebraic coinductives developed in

Chapter 6, in which we carve out a class of coinductives (including streams) that can be

endowed with a special kind of elimination principle (see Lemma 5) for defning

continuous mappings into other types such as R∞
≥0 and P.

2.10 Domain Theory

Divergent series are the devil, and it is

a shame to base on them any

demonstration whatsoever.
Niels Henrik Abel

Here we give the basic defnitions of order and domain theory on which the results of

this dissertation (including those of algebraic coinductives in Chapter 6) depend.

Defnition 8 (Ordered type). An ordered type (or partial order) is a type A with an order

relation vA that is refexive and transitive.

We typically view vA an approximation relation, such that a v b when a

approximates b, that a is somehow a coarser or less informative version of b, or that a

https://github.com/bagnalla/algco/blob/main/order.v#L28

46

could be further refned in order to obtain b. An ordered type A is said to be pointed when

it contains a bottom element ⊥A such that ∀ a : A, ⊥A vA a. A may also have a top element

>A such that ∀ a : A, a vA >A. We often omit the subscripts on vA and ⊥A when the

ordered type A is clear from context.

Defnition 9 (Order equivalence). Elements x and y of ordered type A are

order-equivalent, written x ' y, when x v y and y v x.

Defnition 10 (Directed set). For index type I and ordered type A, a collection U : I → A

is directed when ∀ i j : I, ∃ k : I, U i v U k ∧ U j v U k, or downward-directed when

∀ i j : I, ∃ k : I, U k v U i ∧ U k v U j.

Intuitively, a directed set is one in which all elements are ultimately approximating

the same thing. This leads to a natural notion of convergence: a directed set “converges”

to its supremum whenever it exists. A special case of directed set is that of ω-chain:

Defnition 11 (ω-chain). For ordered type A, a collection C : N → A is an ω-chain when

∀ i j : N, i ≤ j ⇒ C i v C j.

Defnition 12 (Complete partial order). An ordered type A is a complete partial order

(CPO) when every directed U : N → A has a supremum, or a lower-complete partial

order (lCPO) when every downward-directed V : N → A has an infmum. We say that A is

a d-lattice when it is both a CPO and lCPO.

Our choice to specialize to countable directed sets is an artifact of the formalization.

We could work with ω-CPOs instead (where every ω-chain has a supremum) but it is

generally easier to construct directed sets than ω-chains (e.g., every collection of real

numbers is trivially directed).

A few notable d-lattices that appear in this work:

https://github.com/bagnalla/algco/blob/main/order.v#L238
https://github.com/bagnalla/algco/blob/main/order.v#L115
https://github.com/bagnalla/algco/blob/main/order.v#L119
https://github.com/bagnalla/algco/blob/main/order.v#L104
https://github.com/bagnalla/algco/blob/main/cpo.v#L26
https://github.com/bagnalla/algco/blob/main/cpo.v#L31
https://github.com/bagnalla/algco/blob/main/cpo.v#L31

47

Remark 1 (P is a d-lattice). The type P of propositions ordered by implication (i.e.,

P v Q ⇐⇒ P ⇒ Q) is a d-lattice with bottom ⊥ and top > where for any U : I → P (not

necessarily (downward-)directed), sup (U) , ∃ i.U i and inf (U) , ∀ i.U i.

Remark 2 (B is a d-lattice). The type B of Booleans is a d-lattice with bottom false and

top true.

Remark 3 (R∞ is a d-lattice). The type R∞ of nonnegative extended reals is a d-lattice
≥0 ≥0

with bottom 0 and top +∞.

Defnition 13 (Monotone). For ordered types A and B, a function f : A → B is monotone

when ∀ x y : A, x v y ⇒ f x v f y, or antimonotone when ∀ x y : A, x v y ⇒ f y v f x.

Defnition 14 (Continuous). For ordered types A and B, a function f : A → B is

continuous when for every directed set U : N → A, f (sup U) = sup (f ◦ U), or

cocontinuous when U : N → A, f (sup U) = inf (f ◦ U).

We specialize the index type of directed sets to N for simplicity. Note that

(co-)continuity implies (anti)monotonicity.

A continuous function f : A → B may be viewed as an approximation transformer,

sending approximate inputs to approximate outputs. That is, if xn : A is an approximation

of p : A, then f xn : B is an approximation of f p : B. The continuity of f can be seen as a

guarantee that, if a sequence of outputs of f appears to be converging to some result, then

it truly is converging to said result, with no surprises (i.e., discontinuities) anywhere down

the line. In other words, it can be trusted that sequences of approximate outputs obtained

from sequences of approximate inputs are indeed providing increasingly refned

approximations of the true output.

The reader may notice that the dual defnition of co-continuity in Defnition 14 could

instead be obtained through the usual defnition of continuity via a reversal of the order

relation on B (i.e., swapping to an alternate OType instance). We favor the defnition of

https://github.com/bagnalla/algco/blob/main/cpo.v#L156
https://github.com/bagnalla/algco/blob/main/order.v#L128
https://github.com/bagnalla/algco/blob/main/order.v#L134
https://github.com/bagnalla/algco/blob/main/cpo.v#L207
https://github.com/bagnalla/algco/blob/main/eR.v#L379
https://github.com/bagnalla/algco/blob/main/order.v#L320
https://github.com/bagnalla/algco/blob/main/order.v#L325
https://github.com/bagnalla/algco/blob/main/order.v#L545
https://github.com/bagnalla/algco/blob/main/order.v#L554
https://github.com/bagnalla/algco/blob/main/order.v#L28

48

co-continuity in terms of suprema and infma instead so that all OType instances can be

resolved implicitly, which is only possible when we have a one-to-one mapping from

types to instances.

We also sometimes require the following auxiliary notions of continuity:

Defnition 15 (Lower-continuous). For ordered types A and B, a function f : A → B is

lower-continuous (l-continuous) when for every downward-directed set U : N → A,

f (inf U) = inf (f ◦ U), or l-cocontinuous when U : N → A, f (inf U) = sup (f ◦ U).

Defnition 16 (ω-continuous). Let A and B be partially ordered sets. A function f : A → B

is said to be ω-continuous when for any ω-chain C for which the supremum exists,

f (sup C) ' B sup (f ◦ U).

2.11 Measure Theory

In Chapter 5 we employ concepts from measure theory to state and prove the main

equidistribution theorem (Theorem 10) for samplers generated by Zar. This chapter

introduces the basic defnitions of measure theory necessary for understanding the

equidistribution theorem. For more detail we refer the reader to standard texts on measure

theory such as [BR07] or [Hal13].

The notion of “measure” is a generalization of the concept of length or size. For

example, the measure of a real interval [a, b] is (under the standard Lebesgue measure)

equal to its length b − a. Similarly, the measure of a fnite collection of natural numbers

may be equal (under the appropriate choice of measure) to its cardinality. In general, the

concept of measure is rather fexible; for any given space A there can be many different

schemes for assigning measures to its subsets. However, to defne a measure on A, it is

frst necessary to specify which of its subsets are considered to be “measurable”.

Defnition 17 (σ-algebra). A σ-algebra on a set A is a collection Σ ⊆ P(A) of subsets of A

that includes A itself and is closed under countable unions and complements.

https://github.com/bagnalla/algco/blob/main/order.v#L588
https://github.com/bagnalla/algco/blob/main/order.v#L595

49

A ∈ Σ (includes A) S∞
i=0 Ui ∈ Σ when each Ui ∈ Σ (closure under countable union)

A \ U ∈ Σ when U ∈ Σ (closure under complement)

An element U ∈ Σ is called a measurable set in A. The power set P(A) trivially forms

a σ-algebra, called the discrete σ-algebra on A.

Defnition 18 (Measurable Space). A measurable space (A, Σ) is a set A equipped with a

σ-algebra Σ ⊆ P(A).

Given a measurable space (A, Σ), a measure is a function assigning to each element of

Σ (the measurable subsets of A) either a nonnegative real number or +∞.

Defnition 19 (Measure). Let (A, Σ) be a measurable space. A function µ : Σ → R∞
≥0 is a

measure if it satisfes the following properties:

0 ≤ µ(U) for all U ∈ Σ (non-negativity)

µ(∅) = 0 (null empty set) S∞ P∞ µ(i=0 Ui) = i=0 µ(Ui)), (countable additivity)

where {Un} is pairwise disjoint and Ui ∈ Σ for all i : N.

Defnition 20 (Measure Space). A measure space (A, Σ, µ) is a measurable space (A, Σ)

equipped with measure µ : Σ → R∞
≥0.

We are especially interested in measures that assign probabilities to subsets of a

sample space.

Defnition 21 (Probability Measure). A probability measure on measurable space (A, Σ) is

a measure µ : Σ → R∞
≥0 such that µ(A) = 1.

50

Defnition 22 (Probability Space). A probability space is a measure space (A, Σ, µ) such

that µ is a probability measure.

The notion is measure is lifted to functions as follows:

Defnition 23 (Measurable Function). Let (A, ΣA) and (B, ΣB) be measurable spaces. A

function f : A → B is said to be measurable if the preimage under f of measurable sets in

B are measurable in A, i.e., f −1(V) ∈ ΣA for all V ∈ ΣB.

It is possible to use a measurable function f : A → B from measure space (A, ΣA, µA)

to measurable space (B, ΣB) to defne a measure on B:

Defnition 24 (Pushforward Measure). Let (A, ΣA, µA) be a probability space, (B, ΣB) a

measurable space, and f : A → B a measurable function from A to B. The pushforward

measure f∗(µ) : ΣB → R∞
≥0 is a measure induced on B by letting the measure of V ∈ B be

equal to the measure of its preimage in A: f∗(µ)(V) = µ(f −1(V)).

In Section 5.2 we interpret samplers as measurable functions on a standard

probability space and use them as in Defnition 24 to induce probability measures on the

sample space.

51

3 Formal Foundation
S’il n’existait pas Dieu, il faudrait

l’inventer.
Voltaire

The compiler system described in this dissertation is fully implemented and verifed

in the Coq proof assistant. Coq exploits a deep connection between functional

programming and proof theory (commonly referred to as the “Curry-Howard

correspondence” [Cur34, How80, BC85, PCG+10]) to unify programming and proving

within a single language. The theoretical results proved in this dissertation are thus

“live” [Pie16] in the sense that they apply directly to the executable code of the compiler

system rather than to a model that we merely hope to faithfully implement.

In this chapter we present an extension of Coq’s type theory with axioms for classical

reasoning (Section 3.1) and demonstrate how the axioms can be used to defne

nonconstructive operators for taking suprema and infma of collections of elements of

CPOs (Section 3.2). We show how to extend the wp and wlp expectation transformers to

restore a lost symmetry in the presence of conditioning (Section 3.3), and develop

formalizations of the cpGCL (Section 3.4) and the extended wp and wlp semantics

(Section 3.5).

3.1 Axiomatic Extensions

The underlying logic of Coq is a dependent type theory (an extension of the Calculus

of Inductive Constructions [CH88, INR23]) based on Martin-Löf’s constructive type

theory [Mar84], whose infuence can be traced to the intuitionist program initiated by

Brouwer [Bro13]. Constructive type theory is notable for its omission of several features

usually taken for granted by mathematicians (often working tacitly within the framework

of ZFC set theory). The most notorious is the law of excluded middle [Chu28], a subject

52

of bitter dispute between Brouwer and advocates of the opposing school of “formalism”

represented by David Hilbert [Kle52].

Although the type theory of Coq does not include the law of excluded middle by

default, it may safely be added as an axiom, so long as one is careful not to introduce

further axioms that are incompatible with it. Therefore, with all due respect to

intuitionists, we extend the base type theory of Coq with a handful of axioms carefully

chosen to enable a classical style of reasoning while preserving consistency of its logic

(see [Cha23] for a well-known library that also takes the following three axioms).

Axiom 1 (Function Extensionality). Let A and B be types, and let f : A → B and

g : A → B be functions from A to B. Then,

(∀x : A, f x = g x) ⇒ f = g.

Axiom 2 (Excluded Middle). Let P be a proposition. Then,

P ∨ ¬P.

Axiom 3 (Constructive Indefnite Description). Let A be a type and let P : A → P be a

predicate on A such that there provably exists an x : A such that P x. Then, we may

introduce a term of type {x : A | P x} into the computational universe Set.

Axiom 3 is more technical in nature than the other two as it pertains to peculiarities

of the design of Coq. Coq’s type theory is stratifed into a hierarchy of “universes” with

the two universes Prop and Set sitting parallel at the bottom. Prop is the universe of

logical propositions; inhabitants of Prop are considered to be irrelevant for computation

(the principle of proof irrelevance [GCST19]) and are thus ignored by Coq’s extraction

mechanism. Inhabitants of Set, on the other hand, are computationally relevant. In short,

Set represents the programming fragment of Coq’s type theory, and Prop the purely

logical fragment.

53

A clean separation is usually enforced between Prop and Set. One major beneft of

this separation is that non-constructive axioms can be safely added to Prop without risk of

interfering with the computability of terms in Set. However, the axiom of constructive

indefnite description (Axiom 3) allows us to break this separation by transforming proofs

of the form ∃x. P x in Prop into equivalent terms of type {x | P x} (i.e., Σ, or dependent

pair types) in Set. The benefts of doing this become clear in the next section where we

use Axiom 3 to implement convenient operators for expressing suprema and infma in a

classical style. The cost, however, is that we lose the guarantee that all inhabitants of Set

are computable, and must consequently take extra care not to attempt to compute with

terms introduced via Axiom 3 (see Section 6.7.5 for discussion of special cases in which

such terms can be implemented by extraction primitives for external execution in OCaml

or Haskell), as such terms would cause computation to become blocked [Ler15].

In addition to the axioms listed above, we make use of Coq’s standard real numbers

library [coq23b] which is built on a non-constructive axiomatization of the reals. We also

carefully introduce extensionality axioms for convenient reasoning about equality of

coinductive structures (Axioms 4, 5, 6, and 7) (see Section 6.6.1 for discussion).

3.2 Computing Suprema

Many traditional mathematical defnitions involve “taking the supremum” of a

collection of elements via a sup operator [R+76]. For example, the square root of 2 can be

given by the expression sup {x : R | x2 < 2}. Unfortunately, since suprema of (possibly

infnite) collections are not computable in general, it is not possible to defne such an

operator within the purely constructive base type theory of Coq. We may however,

through daring use of non-constructive axioms, pretend that suprema are computable, so

that our defnitions can be naturally expressed as they appear in traditional presentations

as in, e.g., the wp semantics of cpGCL (Defnition 28) which defnes the semantics of

54

loops as the supremum of an ascending chain of expectations. In this section we show

how to use the axioms of excluded middle (Axiom 2) and constructive indefnite

description (Axiom 3) to defne convenient operators for taking suprema and infma of

countably infnite collections.

We begin with the following somewhat peculiar lemma ex ex supremum which says

that for any ordered type A and countable collection f : N → A, there exists an x : A such

that if a supremum exists for f , x is the supremum of f (and we say “the” supremum

because suprema are unique up to order-equivalence by defnition).

Lemma ex ex supremum {A} ‘{OType A} (f : nat → A) :
∃x : A, (∃ b : A, supremum b f) → supremum x f.

Proof. (* omitted *) Qed.

The proof of ex ex supremum depends on excluded middle (Axiom 2). From it and

constructive indefnite description (Axiom 3) we derive the following operator sup prim

which for any ordered type A and countable collection f : N → A produces an element

a : A such that a is the supremum of f whenever such a supremum provably exists.

Defnition sup prim {A} ‘{OType A} (f : nat → A)
: { a : A | (∃ b, supremum b f) → supremum a f } ,
constructive indefnite description (ex ex supremum).

The sup prim operator transports ex ex supremum from the universe Prop of

propositions into the universe Set of computations, allowing for a functional mapping

from collections f : N → A to their suprema (conditional on the existence of such

suprema) within computational contexts. This is an important step toward enabling

succinct expression of suprema in a classical style, but the defnition is still bogged down

by an awkward condition on the existence of suprema. We remedy this by defning the

fnal sup operator as the left projection of sup prim, and then proving that whenever A is a

CPO (meaning that suprema of collections always exist), sup indeed produces the

supremum of its input.

https://github.com/bagnalla/algco/blob/main/cpo.v#L62
https://github.com/bagnalla/algco/blob/main/cpo.v#L62
https://github.com/bagnalla/algco/blob/main/cpo.v#L75

55

(* Take the supremum of countable collection ’f’. *)
Defnition sup {A} ‘{OType A} (f : nat → A) : A , proj1 sig (sup prim f).

(* ’sup f’ is the supremum of ’f’ whenever ’A’ is a CPO and ’f’ is directed. *)
Lemma sup spec {A} ‘{CPO A} (f : nat → A) :

directed f → supremum (sup f) f.
Proof. (* omitted *) Qed.

Indefnite description (Axiom 3) allows the use of sup even within computational

contexts (e.g., the universe Set) (hence the notion of “pretending” that suprema are

computable) while preserving the consistency of the logic of Coq. However, computation

would become blocked [Ler15] if we were to actually attempt to compute with any terms

containing applications of sup. Therefore, we must think of any computations expressed

using sup or other similar non-constructive operators as being merely part of the

correctness specifcation of the computations that are intended for execution, and take

care to enforce a clear separation between the computable and noncomputable terms.

The steps are reproduced for infma, yielding an inf operator analogous to sup:

Lemma ex ex infmum {A} ‘{OType A} (f : nat → A) :
∃x : A, (∃ b : A, infmum b f) → infmum x f.

Proof. (* omitted *) Qed.

Defnition inf prim {A} ‘{OType A} (f : nat → A) : { a : A | (∃ b, infmum b f) → infmum a f } ,
constructive indefnite description (ex ex infmum).

(* Take the infmum of countable collection ’f’. *)
Defnition inf {A} ‘{OType A} (f : nat → A) : A , proj1 sig (inf prim f).

(* ’inf f’ is the infmum of ’f’ whenever ’A’ is an lCPO and ’f’ is downward−directed. *)
Lemma inf spec {A} ‘{lCPO A} (f : nat → A) :

downward directed f → infmum (inf f) f.
Proof. (* omitted *) Qed.

The supremum and infmum operators described above can be understood as

specialized forms of Hilbert’s classical epsilon operator [coq23a]). See [Cha10] for

https://github.com/bagnalla/algco/blob/main/cpo.v#L93
https://github.com/bagnalla/algco/blob/main/cpo.v#L97
https://github.com/bagnalla/algco/blob/main/cpo.v#L79
https://github.com/bagnalla/algco/blob/main/cpo.v#L88
https://github.com/bagnalla/algco/blob/main/cpo.v#L106
https://github.com/bagnalla/algco/blob/main/cpo.v#L110

56

discussion on a similar technique for defning nonconstructive fxpoint operators via

Hilbert’s epsilon, and the TLC library [Cha23] (an alternative to Coq’s standard library for

classical reasoning) built around it.

The classic Kleene fxed-point theorem (see, e.g., [Gun92, Theorem 4.12]) is

formalized by the following ‘iter’ construction, taking the least fxed point of

ω-continuous automorphism F : A → A starting from zero element z : A. The analogous

‘dec iter’ takes the greatest fxed point of decreasing ω-continuous functional F, where

decreasing ω-continuous means to preserve infma of decreasing ω-chains. The lemma

‘iter unfold’ demonstrates that the term ‘iter F z’ is indeed a fxed point (up to order

equivalence) of F whenever F is ω-continuous and z v F z.

(* Compute the least fxed point of F by taking the supremum of the
chain obtained by repeated iteration of F starting from z. *)

Defnition iter {A} ‘{OType A} (F : A → A) (z : A) : A ,
sup (iter n F z).

(* ’iter F z’ is a fxed point of ’F’. *)
Lemma iter unfold {A} ‘{CPO A} (F : A → A) (z : A) :

wcontinuous F →
z v F z →
iter F z === F (iter F z).

Proof. (* omitted *) Qed.

‘iter’ is used to implement a cotree analogue of the ‘ITree.iter’ iteration combinator

of the interaction tree library (see Section 7.6) which is essential for compilation of loops.

3.3 Conditional Symmetry

In the non-conditional setting (that is, cpGCL without the ’observe’ command), the

wp and wlp expectation transformers are known to satisfy a number of basic properties

and healthiness conditions such as linearity, monotonicity, and continuity (see [Kam19,

Section 4.2]). Among these properties can be seen an elegant symmetry between wp and

https://github.com/bagnalla/algco/blob/main/cpo.v#L600
https://github.com/bagnalla/algco/blob/main/cpo.v#L609
https://github.com/bagnalla/algco/blob/main/cotree.v#L1573

57

wlp for all C : cpGCL:

wp C 0 = 0 (3.1)

wlp C 1 = 1 (3.2)

wp C f + wlp C (1 − f) = 1, where f v 1. (3.3)

Equation 3.1 says that wp is strict; wp C sends 0 to 0 for any C. Likewise, equation

3.2 says that wlp is co-strict, with wlp C sending 1 to 1 for any C. Both properties are

essential for reasoning about their respective expectation transformers. Equation 3.3,

however, having many useful corollaries, is perhaps even more valuable. We refer to

equation 3.3 as the invariant sum property.

When support for conditioning on observations is introduced into the language, this

symmetry is lost. wp retains its strictness, but equations 3.2 and 3.3 no longer hold. To see

why equation 3.2 fails, note that wlp takes the value 0 on observation failure, so it must be

the case that wlp C 1 < 1 for any program C with nonzero probability of observation

failure. Similarly, equation 3.3 fails because neither wp nor wlp are able to account for the

probability mass of observation failure.

These remarks lead us directly to a solution. The desired symmetry can be regained

by augmenting wp and wlp with an additional Boolean parameter indicating whether or

not to include the probability mass of observation failure, as shown in table 3.1.

58

Table 3.1: wp and wlp semantics with optional inclusion of probability mass of observation

failure.

C wpb C f wlpb C f

skip f f

abort 0 1

x := E f [x/E] f [x/E]

observe (G) [G] · f + [¬G ∧ b] [G] · f + [¬G ∧ b]

C1; C2 wpb C1 (wpb C2 f) wlpb C1 (wlpb C2 f)

ite (G) {C1} {C2}

{C1} [p] {C2}

while (G) {C0}

[G] · wpb C1 f + [¬G] · wpb C2 f

p · wpb C1 f + (1 − p) · wpb C2 f

sup Fn 0, where

F X = [G] · wpb C0 X + [¬G] · f

[G] · wlpb C1 f + [¬G] · wlpb C2 f

p · wlpb C1 f + (1 − p) · wlpb C2 f

inf Fn 1, where

F X = [G] · wlpb C0 X + [¬G] · f

The parameter b controls whether or not to include the probability mass of

observation failure. wpfalse coincides with the classic defnition of wp (likewise for

wlpfalse), so we often omit the subscript when b = false. The sup (inf) operation is defned

with respect to the pointwise lifting to expectations of the standard order on R∞
≥0 (i.e.,

f v g ⇐⇒ ∀σ, f σ ≤ g σ for expectations f and g).

Technically, only one of wp or wlp must be modifed in this way, but in practice it is

convenient to have both. The new defnitions clearly subsume the old when b = false, and

importantly, satisfy the following symmetry conditions:

wpfalse C 0 = 0

wlptrue C 1 = 1

wpb C f + wlp¬b C (1 − f) = 1, where f v 1.

59

The third of these conditions, the invariant sum property, has many useful

implications. One immediate corollary is that for all C : cpGCL,

wlpfalse C 1 = 1 − wptrue C 0.

and thus the usual defnition of cwp (Defnition 2) can be rewritten as follows:

wpfalse C f
cwp C f ,

1 − wptrue C 0

which corroborates a view of conditioning as simply wrapping the program with an outer

“i.i.d.” loop that resets the program to the beginning upon observation failure, as this

expression of cwp has the form of the limit of a geometric series (see Section 2.5 for

discussion of wp semantics of i.i.d. loops).

An analogue for cotrees of the above corollary is used in the proof of the CF tree

equidistribution theorem from which the main equidistribution theorem (Theorem 10) for

samplers compiled from cpGCL programs is derived.

3.4 cpGCL Formalized

We provide a Coq formalization of the cpGCL described in Section 2.3, with the

following extensions:

1. We add to cpGCL an additional command for drawing samples uniformly at random

from a range of natural numbers, and

2. we let probability expressions appearing in choice commands depend on the

program state.

https://github.com/bagnalla/zar/blob/main/cwp.v#L1036
https://github.com/bagnalla/zar/blob/main/cocwp_facts.v#L1094
https://github.com/bagnalla/zar/blob/main/equidistribution.v#L476
https://github.com/bagnalla/zar/blob/main/equidistribution.v#L476

60

Defnition 25 (cpGCL). The type cpGCL of commands in the conditional probabilistic

guarded command language is defned inductively by the following formation rules:

cpGCL-skip
cpGCL-assign

x : string e : Σ → val

cpGCL-seq

c1 : cpGCL c2 : cpGCL

skip : cpGCL x ← e : cpGCL c1; c2 : cpGCL

cpGCL-observe cpGCL-ite

e : Σ → B e : Σ → B c1 : cpGCL c2 : cpGCL

observe e : cpGCL if e then c1 else c2 : cpGCL

cpGCL-choice

p : Σ → Q ∀σ : Σ, 0 ≤ p σ ≤ 1 c1 : cpGCL c2 : cpGCL

{ c1 } [p] { c2 } : cpGCL

cpGCL-uniform cpGCL-while

e : Σ → N ∀σ : Σ, 0 < e σ k : N → cpGCL e : Σ → B c : cpGCL

uniform e k : cpGCL while e do c end : cpGCL

The command ‘uniform e k’ uniformly samples a natural number 0 ≤ n < e σ (where

σ is the current program state) and continues execution with command ‘k n’.

Some PPLs provide a feature for “soft conditioning” via a command sometimes

called factor [CTY06] or score. In contrast to “hard” conditioning (as supported in

cpGCL by the observe command) which discards all executions not satisfying a given

predicate, soft conditioning weights executions in the current branch by a given factor (so

that weighting by 0 under an if command corresponds to hard conditioning). We derive a

score command for soft conditioning from probabilistic choice and observe:

Defnition 26 (score command). For expression e : Σ → Q, defne score e : cpGCL as:

score e , { skip } [e] { observe λ . false }.

https://github.com/bagnalla/zar/blob/main/cpGCL.v#L82
https://github.com/bagnalla/zar/blob/main/cpGCL.v#L83
https://github.com/bagnalla/zar/blob/main/cpGCL.v#L85
https://github.com/bagnalla/zar/blob/main/cpGCL.v#L86
https://github.com/bagnalla/zar/blob/main/cpGCL.v#L91
https://github.com/bagnalla/zar/blob/main/cpGCL.v#L87
https://github.com/bagnalla/zar/blob/main/cpGCL.v#L88
https://github.com/bagnalla/zar/blob/main/cpGCL.v#L89
https://github.com/bagnalla/zar/blob/main/cpGCL.v#L90

61

3.5 cwp Formalized

We provide a Coq formalization of the generalized variants of wp and wlp described

in Section 3.3, also extended with support for the uniform command.

Defnition 27 (wpb). For b : B, c : cpGCL, f : Σ → R∞
≥0, and σ : Σ, defne

wpb c f σ : R∞
≥0 by induction on c:

wpb : cpGCL → (Σ → R∞
≥0) → Σ → R∞

≥0

skip f , f

x ← e f , f [x/e]

observe e f , [e] · f + [¬e ∧ b]

c1; c2 f , wpb c1 (wpb c2 f)

if e then c1 else c2 f , [e] · wpb c1 f + [¬e] · wpb c2 f

{ c1 } [p] { c2 } f , p · wpb c1 f + (1 − p) · wpb c2 f P1 e σ−1uniform e k f , λσ. e σ i=0 wpb (k i) f σ

while e do c end f , sup (Fn 0), where

F g , [e] · wpb c g + [¬e] · f

A collection of synonyms are used for different confgurations of wpb. The usual wp

is recovered by setting b = false:

Defnition 28 (wp). For command c : cpGCL, expectation f : Σ → R∞
≥0, and program

state σ : Σ, defne wp c f σ : R∞
≥0 (the expected value of f when running c from initial

state σ) by:

wp c f σ : R∞
≥0 , wpfalse c f σ.

wpfail bundles the probability mass of observation failure together with the expected

value of f by setting b = true:

https://github.com/bagnalla/zar/blob/main/cwp.v#L130
https://github.com/bagnalla/zar/blob/main/cwp.v#L130
https://github.com/bagnalla/zar/blob/main/cwp.v#L145

62

Defnition 29 (wpfail). For command c : cpGCL, expectation f : Σ → R∞
≥0, and program

state σ : Σ, defne wpfail c f σ : R∞
≥0 (the expected value of f when running c from initial

state σ plus the probability mass of observation failure) by:

wpfail c f σ : R∞
≥0 , wptrue c f σ.

The probability of observation failure is then given by wpfail when f is constant at 0:

Defnition 30 (fail). For command c : cpGCL and program state σ : Σ, defne

fail c σ : R≤

≥
1
0 (the probability of observation failure) by:

fail c σ : R≤

≥
1
0 , wpfail c 0 σ.

Defnition 31 (wlpb). For b : B, c : cpGCL, f : Σ → R≤

≥
1
0 (a bounded expectation), and

σ : Σ, defne wlpb c f σ : R≤

≥
1
0 by induction on c (we list only the while case as the rest are

like wp, mutatis mutandis):

wlpb : cpGCL → (Σ → R≤1
≥0) → Σ → R≤1

≥0

while e do c end f , inf (Fn 1), where

F g , [e] · wlpb c g + [¬e] · f

The usual wlp is recovered from wlpb by setting b = false:

Defnition 32 (wlp). For command c : cpGCL, bounded expectation f : Σ → R≤

≥
1
0, and

program state σ : Σ, defne wlp c f σ : R≤

≥
1
0 (the expected value of f when running c from

initial state σ plus the probability mass of divergence) by:

wlp c f σ : R≤

≥
1
0 , wlpfalse c f σ.

wlpfail bundles the probability mass of observation failure together with the liberal

expected value of f by setting b = true:

https://github.com/bagnalla/zar/blob/main/cwp.v#L146
https://github.com/bagnalla/zar/blob/main/cwp.v#L147
https://github.com/bagnalla/zar/blob/main/cwp.v#L149
https://github.com/bagnalla/zar/blob/main/cwp.v#L149
https://github.com/bagnalla/zar/blob/main/cwp.v#L164

63

Defnition 33 (wlpfail). For command c : cpGCL, bounded expectation f : Σ → R≤

≥
1
0, and

program state σ : Σ, defne wlpfail c f σ : R≤

≥
1
0 (the expected value of f when running c

from initial state σ plus the probability masses of observation failure and divergence) by:

wlpfail c f σ : R≤

≥
1
0 , wlptrue c f σ.

The probability of failure or divergence is obtained from wlpfail by specializing f to

0:

Defnition 34 (fail or diverge). For command c : cpGCL and program state σ : Σ, defne

fail or diverge c σ : R≤

≥
1
0 (the probability of observation failure plus the probability of

divervgence) by:

fail or diverge c σ : R≤

≥
1
0 , wlpfail c 0 σ.

Lastly, cwp is defned in the obvious way to match Defnition 2:

Defnition 35 (cwp). For command c : cpGCL and expectation f : Σ → R∞
≥0,

wpfalse c f
cwp c f : Σ → R∞ .≥0 ,

wlpfalse c 1

The next two lemmas prove that wp is continuous and that wlp is l-continuous:

Lemma 1 (wp is continuous). Let b : B, c : cpGCL, and let f : N → Σ → R∞
≥0 be an

ω-chain of expectations. Then,

wpb c (sup f) = sup (wpb c ◦ f).

Lemma 2 (wlp is l-continuous). Let b : B, c : cpGCL, and let f : N → Σ → R∞
≥0 be a

decreasing ω-chain of expectations. Then,

wlpb c (inf f) = inf (wlpb c ◦ f).

We also validate our defnition of cwp by checking that loops are semantically

equivalent to their one-step unrollings (as we noted to expect in Section 2.5):

https://github.com/bagnalla/zar/blob/main/cwp.v#L165
https://github.com/bagnalla/zar/blob/main/cwp.v#L166
https://github.com/bagnalla/zar/blob/main/cwp.v#L168
https://github.com/bagnalla/zar/blob/main/cwp.v#L544
https://github.com/bagnalla/zar/blob/main/cwp.v#L688

64

Theorem 1 (cwp of loops). Let G : Σ → B, c : cpGCL, and f : Σ → R∞
≥0. Then,

cwp (while G do c end) f = cwp (if G then c; while G do c end else skip) f .

https://github.com/bagnalla/zar/blob/main/cwp.v#L876

65

4 Compiling cpGCL
We are all hungry and thirsty for

concrete images.
Salvador Dalı́

Figure 4.1: Zar compiler pipeline.

In this chapter we describe the strategy employed by Zar for compiling high-level

cpGCL programs to interaction tree samplers for efficient execution in OCaml. We

introduce choice-fx (CF) trees as an intermediate program representation (Section 4.1) and

defne a weakest pre-expectation style semantics over them (Section 4.2). We then show

how cpGCL programs are compiled to CF trees (Section 4.3) and describe an algorithm

for transforming CF trees containing biased probabilistic choices to semantically

equivalent CF trees with only unbiased (with probability 1
2 of taking either branch)

choices (Section 4.4). Finally, we show how the sampling processes encoded by unbiased

CF trees are elaborated to an executable interaction tree representation (Section 4.5).

4.1 Choice-Fix (CF) Trees

Toward the ultimate goal of compiling cpGCL programs to proved-correct executable

samplers, we introduce a tree-based intermediate representation called choice-fx (CF)

trees. Inspired by the discrete distribution generating (DDG) trees introduced by Knuth

and Yao [KY76], CF trees can be understood as encoding the operational sampling

66

behavior of probabilistic programs as decision processes with probabilistic branching and

loops. Probabilistic choices appearing in DDG trees typically correspond to fair coin fips,

i.e., the Bernoulli distribution with p = 2
1 . CF trees differ in this regard; probabilistic

choices may be biased with bias parameter p ∈ [0, 1] denoting the probability of “heads”

or “taking the left subtree”.

CF trees occupy a sweet-spot of abstraction between cpGCL programs and the

coinductive backends of interactions trees (Section 4.5) and algebraic cotrees (Chapter 7),

serving as a convenient compilation target from cpGCL as well as an inductive notation

for potentially infnite binary trees that can be naturally “unfolded” to a coinductive

representation for execution. CF trees are also a convenient representation for program

transformations such as de-biasing (Section 4.4), which are necessary for generating

samplers that operate within the random bit model.

Defnition 36 (CF trees). Let T
Σ
cf (the type of CF trees with element type Σ) be the

smallest collection of elements closed under the following formation rules:

CF-leaf CF-choice
CF-fail

σ : Σ p : Q 0 ≤ p ≤ 1 k : B → T
Σ
cf

leaf σ : T cf fail : T cf choice p k : T cf
Σ Σ Σ

CF-fix

σ : Σ e : Σ → B g : Σ → T
Σ
cf k : Σ → T

Σ
cf

fx σ e g k : T
Σ
cf

The name “choice-fx” is due to the two non-leaf constructors of the type: 1) choice

nodes for probabilistic choice, and 2) fx nodes for encoding loops. ‘leaf σ’ denotes the

end of a program execution with terminal state σ : Σ. ‘fail’ denotes a program execution

in which an observed predicate (via the observe command) has been violated.

‘choice p k’ represents a probabilistic binary choice between two subtrees ‘k true’ and

https://github.com/bagnalla/zar/blob/main/tree.v#L23
https://github.com/bagnalla/zar/blob/main/tree.v#L24
https://github.com/bagnalla/zar/blob/main/tree.v#L25
https://github.com/bagnalla/zar/blob/main/tree.v#L26
https://github.com/bagnalla/zar/blob/main/tree.v#L27

67

‘k false’ where rational bias p ∈ [0, 1] denotes the probability of taking the left subtree

‘k true’) and 1 − p the probability of taking the right subtree ‘k false’.

Lastly, ‘fx σ e g k’ encodes

a loop with initial state σ,
choice p (λb0.

guard condition e, body generator if b0 then
fx {h 7→ 0, b 7→ true} (λσ. σ[b])g, and continuation k, and should

(λσ. choice p (λb0 . if b0

be understood operationally as then leaf (σ[h 7→ h + 1, b 7→ true])
else leaf (σ[h 7→ h + 1, b 7→ false])))follows: Starting with initial CF

(λσ. if σ h is prime then leaf σ else fail)
tree ‘leaf σ’, repeatedly extend else fail)

the leaves of the tree constructed
Figure 4.2: CF tree term representation of Pro-

thus far via either the generating
gram 1.1a.

function g (re-entering the loop

when e σ = true) or continuation

k (exiting the loop when e σ = false). Figure 4.2 shows the CF tree representation of the

‘primes’ program from Figure 1.1a.

The type T
Σ
cf forms a monad [Wad92] (a variant of the tree monad [JD93]), with

monadic return given by the leaf constructor, and bind (essential for compiling sequenced

cpGCL commands) given by Def. 37 (using the infx notation ’�=cf’).

Defnition 37 (CF tree bind). For CF tree t : T
Σ
cf and T

Σ
cf -valued continuation

k : T cfk : Σ → T
Σ
cf , defne t �=

Σ by induction on t:

�=cf: T cf
Σ → (Σ → T cf

Σ) → T cf
Σ

leaf σ �=cf k , k σ

fail �=cf , fail

choice p f �=cf k , choice p (λb. f b �=cf k)

fx e g h �=cf k , fx e g (λσ. h σ �=cf k)

https://github.com/bagnalla/zar/blob/main/tree.v#L32
https://github.com/bagnalla/zar/blob/main/tree.v#L32

68

Defnition 37 is useful for compiling sequential compositions of cpGCL commands

to CF trees in Section 4.3.

4.2 CF Tree Semantics

The inference (or twp) semantics of CF trees is defned analogously to the cwp

semantics of cpGCL (Section 3.5). The expression ‘twpfalse t f ’ denotes the expected value

of expectation f over CF tree t. When b = true, twpb additionally includes the probability

mass of observation failure.

Defnition 38 (twpb). For t : T
Σ
cf a CF tree and f : Σ → R∞

≥0 an expectation, defne

twpb t f : R∞
≥0 by induction on t:

twpb : T cf
Σ → (Σ → R∞

≥0) → R∞
≥0

leaf σ f , f σ

fail , [b]

choice p k f , p · twpb (k true) f + (1 − p) · twpb (k false) f

fx σ0 e g k f , sup (Fn 0) σ0, where

F h σ , if e σ then twpb (g σ) h else twpb (k σ) f

The “liberal” variant of twp is defned as follows, where ‘twlpb t f ’ denotes the

expected value of expectation f over CF tree t plus the probability mass of divergence

(and plus the mass of observation failure when b = true).

https://github.com/bagnalla/zar/blob/main/tcwp.v#L21
https://github.com/bagnalla/zar/blob/main/tcwp.v#L21

69

Defnition 39 (twlpb). For t : T
Σ
cf a CF tree and f : Σ → R≤

≥
1
0 a bounded expectation,

defne twlpb t f : R≤

≥
1
0 by induction on t:

twlpb : T cf
Σ → (Σ → R≤1

≥0) → R≤1
≥0

leaf σ f , f σ

fail , [b]

choice p k f , p · twlpb (k true) f + (1 − p) · twlpb (k false) f

fx σ0 e g k f , inf (Fn 1) σ0, where

F h σ , if e σ then twlpb (g σ) h else twlpb (k σ) f

The conditional (tcwp) semantics for CF trees then matches cwp (Defnition 2):

Defnition 40 (tcwp). For t : T
Σ
cf a CF tree and f : Σ → R∞

≥0 an expectation, defne

tcwp t f : R∞
≥0 by:

twpfalse t f
tcwp t f : R∞ .≥0 ,

twlpfalse t 1

Many desirable properties of wp and wlp also hold in the CF tree setting. Notably,

we have an analogue of the invariant sum property:

Theorem 2 (CF tree invariant sum). Let t : T
Σ
cf be a well-formed CF tree, b : B, and

f : Σ → R≤

≥
1
0 a bounded expectation. Then,

twpb t f + twlp¬b t (1 − f) = 1.

Our intent is that the tcwp semantics of the CF tree representation of a cpGCL

program should coincide exactly with the program’s cwp semantics. Indeed, the following

section presents a semantics-preserving compiler from cpGCL to CF trees.

4.3 Compiling to CF Trees

A command c : cpGCL is compiled to a function ~c� : Σ → T
Σ
cf mapping initial state

σ : Σ to the CF tree encoding the sampling semantics of c starting from σ. Recall that the

https://github.com/bagnalla/zar/blob/main/tcwp.v#L37
https://github.com/bagnalla/zar/blob/main/tcwp.v#L37
https://github.com/bagnalla/zar/blob/main/tcwp.v#L53
https://github.com/bagnalla/zar/blob/main/tcwp_facts.v#L260

70

operator ‘�=’ denotes bind in the CF tree monad (Defnition 37). The algorithm in

Defnition 41 performs the translation from cpGCL programs to their corresponding CF

tree representations.

Defnition 41 (~·�). For command c : cpGCL and program state σ : Σ, defne ~c� σ : T
Σ
cf

by induction on c:

~·� : cpGCL → Σ → T cf
Σ

skip σ , leaf σ

x ← e σ , leaf σ[x 7→ e σ]

observe e σ , if e σ then leaf σ else fail

c1; c2 σ , ~c1� σ �= ~c2�

if e then c1 else c2 σ , if e σ then ~c1� σ else ~c2� σ

{ c1 } [e] { c2 } σ , choice (e σ) (λb. if b then ~c1� σ else ~c2� σ)

uniform e k σ , uniform tree (e σ) �= λn. ~k n� σ

while e do c end σ , fx σ e ~c� leaf

The function ‘uniform tree’ builds a CF tree encoding a uniform distribution over a

fxed range of natural numbers, the specifcation of which is captured by the following

lemma:

Lemma 3 (Uniform tree correctness). Let 0 < n : N and f : N → R∞
≥0. Then,

n−1X1
twpfalse (uniform tree n) f = f i.

n
i=0

By setting f = [λm. m = k], we obtain as an immediate consequence of Lemma 3 that
1

twpfalse (uniform tree n) [λm. m = k] = for all k < n, or in other words, that uniform tree
n

is uniformly distributed. The overall compiler is then proved correct by the following

theorem establishing the correspondence of the cwp semantics of cpGCL programs with

the tcwp semantics of the CF trees generated from them.

https://github.com/bagnalla/zar/blob/main/tree.v#L32
https://github.com/bagnalla/zar/blob/main/compile.v#L16
https://github.com/bagnalla/zar/blob/main/compile.v#L16
https://github.com/bagnalla/zar/blob/main/uniform.v#L1219

71

Theorem 3 (CF tree compiler correctness). Let c : cpGCL, f : Σ → R∞
≥0, and σ : Σ. Then,

tcwp (~c� σ) f = cwp c f σ.

4.4 De-Biasing CF Trees

CF trees generated by the Zar compiler may have arbitrary p ∈ [0, 1] ⊆ Q bias values

at choice nodes. To obtain sampling procedures in the random bit model, we apply a

bias-elimination transformation to replace all probabilistic choices in the generated CF

trees by fair coin-fipping schemes that implement semantically equivalent behavior. The

CF trees resulting from this transformation have p = 1
2 at all choice nodes. Figure 4.3

shows an example of the debiasing transformation applied to a choice node with p = 3
2 .

2
3

true false

1
2

true 1
2

false

fx

(a) Biased choice with Pr(true) = 2
3

(b) Debiased tree with Pr(true) = 2
3

Figure 4.3: choice CF tree with Pr(true) = 2
3 (left) and corresponding debiased CF tree

(right).

n
The algorithm for translating a ‘choice p k’ node with rational bias p = and

d
subtrees t1 = k true and t2 = k false goes as follows:

1. Recursively translate t1 and t2, yielding t1
0 and t2

0 respectively,

2. choose m : N such that 2m−1 < d ≤ 2m ,

https://github.com/bagnalla/zar/blob/main/cwp_tcwp.v#L117

72

3. generate a perfect CF tree of depth m with all terminal nodes marked by a special

loopback value,

4. replace the frst n terminals with copies of subtree t1
0 , and the next d terminals with

copies of subtree t2
0 , leaving sm − n − d loopback nodes remaining,

5. coalesce duplicate leaf nodes to eliminate redundancy,

6. wrap the tree in a fx constructor with guard condition that evaluates to true on the

loopback value, and

7. replace the original choice node with the newly generated tree.

In essence, the biased choice is replaced by a rejection sampler that simulates a

biased coin by repeated fips of a fair one. An implementation of the choice translation

algorithm is in the fle ‘uniform.v’ under the name ‘bernoulli tree’. As its name suggests,

bernoulli tree takes a rational probability p and produces a CF tree over Boolean outputs

with probability p of true. The overall debiasing transformation on CF trees is then a

straightforward recursive traversal of the input tree, using bernoulli tree in conjunction

with monadic bind (Defnition 37) to replace biased choice nodes with equivalent subtrees

containing only unbiased choices.

Defnition 42 (debias). For t : T
Σ
cf a CF tree, defne debias t : T

Σ
cf by induction on t:

debias : T cf
Σ → T cf

Σ

leaf σ , leaf σ

fail , fail

choice p k , bernoulli tree p �= λb. if b then debias (k true) else debias (k false)

fx σ e g k , fx σ e (debias ◦ g) (debias ◦ k)

The essential results for the debiasing transformation now follow: debias preserves

tcwp semantics and produces trees in which all choices are unbiased.

https://github.com/bagnalla/zar/blob/main/uniform.v
https://github.com/bagnalla/zar/blob/main/uniform.v#L411
https://github.com/bagnalla/zar/blob/main/debias.v#L25
https://github.com/bagnalla/zar/blob/main/debias.v#L25

73

Theorem 4 (debias preserves tcwp semantics). Let t : T
Σ
cf be a CF tree and f : Σ → R∞

≥0

an expectation. Then,

tcwp (debias t) f = tcwp t f .

Theorem 5 (debias produces unbiased trees). Let t : T
Σ
cf be a CF tree. Then, p = 2

1 for

every ‘ choice p k’ in debias t.

CF Tree Optimization A potential cause of inefficiency of the de-biasing

transformation is the existence of redundant choice nodes. For example, when p = 0, a

‘choice p k’ node can never possibly take its left branch and so may as well be outright

replaced by its right subtree ‘k false’ instead of being wrapped in an unnecessary

bernoulli tree construction (illustrated in Figure 4.4a). Likewise, when p = 1, ‘choice p k’

ought to be replaced by its left subtree ‘p true’ (Figure 4.4b). Additionally, the type Q of

rational numbers in Coq is not canonically represented (i.e., not guaranteed to be in

reduced form), and non-reduced rationals may incur unnecessary overhead in the

construction of bernoulli trees. To resolve both of these issues, we implement an

optimization pass (applied before debiasing) that eliminates redundant choices and reduces

rational probabilities via the function Qred : Q → Q from the Coq standard library.

Defnition 43 (elim choices). For t : T
Σ
cf a CF tree, defne elim choices t : T

Σ
cf by

induction on t:

elim choices : T cf
Σ → T cf

Σ

leaf σ , leaf σ

fail , fail

choice p k , if p = 0 then elim choices (k false) else

if p = 1 then elim choices (k true) else

choice (Qred p) (elim choices ◦ k)

fx σ e g k , fx σ e (elim choices ◦ g) (elim choices ◦ k)

https://github.com/bagnalla/zar/blob/main/debias.v#L125
https://github.com/bagnalla/zar/blob/main/debias.v#L134
https://github.com/bagnalla/zar/blob/main/debias.v#L147
https://github.com/bagnalla/zar/blob/main/debias.v#L147

74

0

tl tr
tl

1

tr
...

(a) choice p k node with p = 0, k true = tl,
(b) choice p k node with p = 1, k true = tl,

and k false = tr. Since the probability of
and k false = tr. The entire node can be

taking tl is 0, the entire node can be replaced
replaced by the left subtree tl.

by the right subtree tr.

Figure 4.4: Illustration of redundant choice nodes.

We prove that elim choices preserves tcwp semantics, and produces CF trees such

that for all p : Q appearing in choice nodes, 0 < p < 1 and p is in reduced form.

Theorem 6 (elim choices preserves tcwp semantics). Let t : T
Σ
cf be a CF tree and

f : Σ → R∞
≥0 an expectation. Then,

tcwp (elim choices t) f = tcwp t f .

Theorem 7 (elim choices produces reduced trees). Let t : T
Σ
cf be a CF tree and

f : Σ → R∞
≥0 an expectation. Then, p is in reduced form and 0 < p < 1 for every

‘choice p k’ node in t.

De-biased CF trees are close to being executable samplers in the random bit model.

However, since they permit the existence of infnite execution paths (and hence denote

sampling processes that can’t be expected in general to always terminate), we must frst

pass to the coinductive unfolding of CF trees for execution.

We provide two target coinductive representations. One of them, based on the

concept of algebraic CPO and built on the AlgCo framework (the topic of Chapter 6), is

https://github.com/bagnalla/zar/blob/main/debias.v#L237
https://github.com/bagnalla/zar/blob/main/debias.v#L237

75

developed in Chapter 7. It is this representation on which we can naturally perform

weakest pre-expectation style reasoning.

The other representation, primarily for purposes of extraction and execution, is based

on the interaction tree library [XZH+20] and makes use of the paco library [HNDV13] for

coinductive reasoning. We present this interaction tree representation and the algorithm

for generating interaction trees from CF trees in the following section (Section 4.5).

4.5 Generating Interaction Trees

Interaction trees [XZH+20] (ITrees) are a general-purpose coinductive data structure

for modeling effectful (co-)recursive programs that interact with their environments. The

coq-itree library provides a suite of combinators for constructing ITrees, along with a

collection of formal principles for reasoning about their equivalence. An interaction tree

computation performs an effect by raising an event (which may carry data) that is then

handled by the environment, possibly providing data in return. In this section we show

how to generate executable interaction tree samplers from CF trees.

Interaction Tree Syntax Interaction trees are parameterized by an event functor

E : Type → Type that specifes the kinds of interactions the computation can have with its

environment. In our case, there is only one kind of interaction: a sampler may query its

environment for a single randomly generated bit. Thus the event functor

boolE : Type → Type has just one constructor get taking zero arguments, with type index

B indicating that the environment’s response should be a single Boolean value.

Defnition 44 (TA
it). Defne the type TA

it of interaction trees with event functor boolE and

element type A coinductively by the formation rules:

itree-ret itree-tau itree-vis
boolE-get

t : T ita : A A k : B → TA
it

get : boolE B ret a : TA
it tau t : TA

it vis get k : TA
it

https://github.com/DeepSpec/InteractionTrees
https://github.com/bagnalla/zar/blob/main/itree.v#L43
https://github.com/bagnalla/zar/blob/main/itree.v#L41

76

The constructors of TA
it encode a sampling procedure over sample space A as follows:

‘reta’ produces the sample a : A, ‘tau t’ performs a single “silent step” (see 6.1 for

discussion) producing no effect and continuing the sampling process with t : TA
it, and

‘vis get k’ requests a single bit b : B from the environment and continues with ‘k b : TA
it’.

For example, Figure 4.5 shows a coinductively defned ITree encoding a sampler for the

Bernoulli(2
3) distribution corresponding to the CF tree in Figure 4.3b.

it 2 , vis get (λb0. if b0 then ret true
3

else vis get (λb1. if b1 then ret false

else tau it 2))
3

Figure 4.5: ITree encoding of Bernoulli(2
3) distribution corresponding to the CF tree in

Figure 4.3b. The corecursive occurrence of it 2 is guarded by a tau constructor, a common
3

practice (although not necessary in this example) to ensure productivity of the ITree (see

Section 6.1 for related discussion on tau nodes).

Unfolding a CF tree to an interaction tree proceeds in two steps:

1. Generate an “open” ITree t : T it by induction on the input CF tree (with 1 on the(1+Σ)

LHS encoding observation failure), and then

2. “tie the knot” through observation failures in t to produce the fnal ITree of type T
Σ
it .

The frst step is implemented by the function to itree open (see Figure 4.6a):

77

Defnition 45 (to itree open). Given an unbiased CF tree t : T
Σ
cf , defne

to itree open t : T1
it
+Σ by induction on t:

to itree open : T cf
Σ → T it 1+Σ

leaf σ , ret (inr σ)

fail , ret (inl ())

choice k , vis get (to itree open ◦ k)

fx σ0 e g k , ITree.iter (λσ. if e σ then y ← to itree open (g σ) ; ;

match y with

| inl () ⇒ ret (inr (inl ()))

| inr σ0 ⇒ ret (inl σ0)

end

else ITree.map inr (to itree open (k σ))) σ0

Since ITrees have just one kind of terminal constructor (ret) to CF trees’ two (leaf

and fail), we generate ITrees of type T it where fail nodes are translated to ret (inl ()),(1+Σ)

and nodes of the form leaf x to ret (inr x), where inl and inr are the left and right sum

injections. fx nodes are translated via application of the ITree.iter combinator. We refer to

[XZH+20, Section 4] for a general explanation of iteration with ITrees; for us it is enough

to know that ITree.iter takes a generating function of type Σ → T it and “ties the (Σ+(1+Σ))

knot” through Σ on the LHS to produce an ITree of type T(
it
1+Σ). The generating function

encodes the body of the loop as well as its continuation, where returning inl σ indicates to

repeat the loop with a new iteration generated from state σ, and returning inr x with

x : 1 + Σ indicates to terminate the program with value x which is either inl () for

observation failure or inr σ for terminal state σ (see Figure 4.6a).

The second step is implemented by the following defnition of ‘tie itree’ which

corecursively “ties the knot” [Elk21] through the left side of the sum 1 + Σ via ITree.iter to

https://github.com/bagnalla/zar/blob/main/itree.v#L169
https://github.com/bagnalla/zar/blob/main/itree.v#L169

78

() ()
2 3 ()

2 3
5... ...5

(a) to itree open primes
(b) tie itree (to itree open primes)

Figure 4.6: Interaction trees generated by ‘to itree open primes’ (left) and then by “tying

the knot” via ‘tie itree’ (right), where ‘primes’ is the cpGCL program in Figure 1.1a.

produce ITree rejection samplers that restart execution from the beginning upon

observation failure (Figure 4.6b).

Defnition 46 (tie itree). For t : T1
it
+Σ

, defne tie itree t : T
Σ
it as:

tie itree t , ITree.iter (λ . t) ().

The overall compilation from CF trees to ITrees is then given by the composition of

to itree open with tie itree:

Defnition 47 (to itree). For t : T
Σ
cf , defne to itree t : T

Σ
it as:

to itree t , tie itree (to itree open t).

Interaction tree semantics We wish to defne an analogue itwp of the cwp semantics

for ITree samplers and prove the correctness of ITree generation with respect to it, such

that itwp f (tie itree (to itree open t)) = tcwp t f for all t : T cf and f : Σ → R∞
≥0. This

Σ

turns out to be awkward, however, due to the lack of induction principle for ITrees.

To overcome the problem, we observe that ITree samplers form an algebraic

CPO [Gun92, Chapter 5], i.e., a domain in which all elements can be obtained as suprema

https://github.com/bagnalla/zar/blob/main/itree.v#L206
https://github.com/bagnalla/zar/blob/main/itree.v#L210
https://github.com/bagnalla/algco/blob/main/aCPO.v#L51
https://github.com/bagnalla/algco/blob/main/aCPO.v#L51

79

of ω-chains of fnite approximations. Moreover, the types R∞
≥0 of extended reals and P of

propositions are CPOs. We exploit these observations to provide a special kind of

induction principle for coinductive trees (see [Gun92, Lemma 5.24]). Such a principle

enables the defnition of Scott-continuous [Sco70, AJ94] functions like itwp, and gives

rise to a powerful suite of proof principles for reasoning about them via reduction to

inductive proofs over inductive structures (for which Coq is much better suited than for

coinduction). See Chapter 6 for a full exposition of the theory of algebraic coinductives

and Chapter 7 (especially Section 7.6) for its application to giving weakest

pre-expectation semantics to ITree samplers.

End-to-end compiler The compiler pipeline steps are composed via cpGCL to itree

and proved correct by Theorem 8 (with positivity constraint on wlpfalse c 1 σ assuring that

the program does not condition on contradictory observations):

Defnition 48 (cpGCL to itree). For c : cpGCL and σ : Σ, defne

cpGCL to itree c σ , to itree (debias (elim choices (compile c σ))).

Theorem 8 (Compiler Correctness). Let c : cpGCL, f : Σ → R∞
≥0, and σ : Σ such that

0 < wlpfalse c 1 σ. Then,

cwp c f σ = itwp f (cpGCL to itree c σ).

Theorem 8 establishes semantics preservation of the compiler pipeline with respect to

itwp. However, it doesn’t directly guarantee any properties of samples generated by the

resulting ITrees. Drawing on basic measure theory [Hal13] and the theory of

uniform-distribution modulo 1 [Wey16, KN12, BG22], the next chapter extends the result

of Theorem 8 to show that sequences of generated samples are equidistributed with

respect to the cwp semantics of their source programs.

https://github.com/bagnalla/algco/blob/main/aCPO.v#L122
https://github.com/bagnalla/zar/blob/main/itree.v#L100
https://github.com/bagnalla/zar/blob/main/itree.v#L402
https://github.com/bagnalla/zar/blob/main/itree.v#L465

80

5 Correctness of Sampling
I can prove anything by statistics

except the truth.
George Canning

Given a suitable source of i.i.d. randomness (Section 5.1), we say that a sampler for

program c : cpGCL is correct if it produces a sequence xn : N → Σ such that for any

observation Q : Σ → P over terminal program states, the proportion of samples falling

within Q asymptotically converges to the expected value of [Q] (i.e., the probability of Q)

according to c’s cwp semantics. In other words, a sampler is correct when the samples it

produces are equidistributed [BG22] with respect to cwp.

This section formalizes the notion of equidistribution described above and proves the

main sampling equidistribution theorem (Theorem 10, Section 5.3). We frst clarify what

is meant by “a suitable source of randomness” (Section 5.1) and then re-cast the problem

of inference as that of computing a measure (Section 5.2).

5.1 The Source of Randomness

For the source of randomness, we assume access to potentially infnite sequences of

uniformly distributed bits from the sampler’s operating environment. The space of infnite

sequences of bits (i.e., bitstreams), denoted 2N, is called the Cantor space [Kec12]. The

Cantor space, equipped with the Borel σ-algebra induced from closure under countable

unions and complements of basic sets of of bitstreams defned by fnite prefxes (see the

following paragraph), and with the uniform Lebesgue measure, forms the standard Borel

probability space Ω. We assume the ability to draw elements of 2N at random from Ω, i.e.,

uniformly at random.

Bisecting the Unit Interval To help visualize the measure on 2N, consider the bisection

scheme shown in Figure 5.1a for identifying strings of bits (e.g., “0”, “01”, “011”, etc.)

81

with dyadic subintervals (Defnition 49) of the unit interval [0, 1]. Let I(ω) denote the

interval corresponding to string ω, and B(ω) ⊆ 2N the basic set of bitstreams with prefx ω

(i.e., B(ω) = {s | ω v s} where ‘ω v s’ means that string ω is a fnite prefx of bitstream s).

We arrange for the measure of B(ω), denoted by µΩ(B(ω)), to be equal to the length of the

interval I(ω) which is equal to 2−n where n is the length of ω. We then defne the source of

randomness Ω to be the measure space obtained by equipping 2N with measure µΩ lifted

to the Borel σ-algebra ΣΩ of countable unions and complements of basic sets, coinciding

with the standard Lebesgue measure λ on the Borel σ-algebra generated by subintervals of

[0, 1].

Defnition 49 (Dyadic Interval). A dyadic interval is an interval of real numbers whose

endpoints are of the form j and j+1 , where j is an integer and n is a natural number. 2n 2n

Since we are only interested in subintervals of [0, 1], we always have 0 ≤ j ≤ 2n . We

say that string ωa is a prefx of another string ωb iff there exists an ω0 such that

ωa ++ ω0 = ωb (where ’++’ denotes string concatenation), written ωa v ωb). Note that

ωa v ωb iff I(ωb) ⊆ I(ωa). Consequently, if neither ωa v ωb nor ωb v ωa (i.e., if ωa and ωb

are incomparable), then we have I(ωa) ∩ I(ωb) = ∅, and we say that ωa and ωb are disjoint.

By taking the closure of the collection of all basic sets under unions and

complements, we obtain the Borel σ-algebra ΣΩ on Ω. Since measures on ΣΩ are uniquely

determined by their action on basic sets, to defne a measure on the whole of ΣΩ it suffices

to defne it just for the basic sets. For us, the measure of basic set B(ω) (i.e., the length of
1

the interval corresponding to bitstring ω) is readily given as where n is the length of ω.
2n

The overall measure this induces on Ω corresponds to the standard Lebesgue measure on

[0, 1], and thus calculation of the measure of a Borel subset of Ω can be understood as

calculation of the sum of lengths of disjoint dyadic subintervals of [0, 1].

82

true
false

(b) ITree sampler t 2 .
3

true

(c) Preimage intervals of

event {true} under ft 2 .
3

Figure 5.1: Interval bisection scheme (left) and its application to ITree t 2 (right).
3

5.2 Inference as Measure

We view ITree sampler t : T
Σ
it as a partial measurable function ft : Ω * Σ from Ω to

the sample space (Σ, ΣΣ) where ΣΣ is the discrete (power set) σ-algebra on the space of

program states Σ. Evaluation of ft on bitstream s : 2N has two possible outcomes:

1. The sampler diverges, consuming bits ad infnitum without ever producing a

sample. In that case, we have ft(s) = ⊥, i.e., ft is undefned on s. We admit samplers

for which such infnite executions are permitted but occur with probability 0 (i.e.,

the set D ⊆ 2N of diverging inputs has measure 0). Or,

2. a value x is produced after consuming a fnite prefx ω v s. Thus, the function ft

sends all bitstreams in the basic set B(ω) to output x.

For example, consider the ITree sampler t 2 in Figure 5.1b yielding true with
3

probability 2
3 . The preimage f −1({true}) of event {true} under ft 2 (i.e., the set of t 2

3 3

(a) Bisection scheme identifying bitstrings with dyadic

subintervals of [0, 1].

83

bitstreams sent by ft 2 to true) has measure 3
2 . To see why, observe that t 2 contains

33

infnitely many disjoint paths to true (“0”, “100”, “10100”, etc.), with corresponding

1 1 P∞ 1 1 k 2 2interval lengths 1 , etc., a geometric series with sum · =
1

= 2 , 8 , 32 k 2 4 1− 1 3 .
4

We can exploit this observation to let the measure of any event Q ⊆ {true, false} be

equal to the measure of its preimage under ft 2 , thus inducing the following probability
3

measure µt 2 : {true, false} → R≤1 (where λ(I) denotes the length of interval I):
≥0

3

µt 2 (∅) = µΩ(f −1(∅)) = λ(∅) = 0t 2
3 3

2 2µt 2 ({true}) = µΩ(f −1({true})) = λ([0,)) = t 2 3 3
3 3

1 µt 2 ({false}) = µΩ(f −1({false})) = λ([2
3 , 1]) = t 2 3

3 3

µt 2 ({true, false}) = µΩ(f −1({true, false})) = λ([0, 1]) = 1t 2
3 3

Computing Preimages We can generalize the above method to induce a probability

measure µt : Σ → R≤1 from any t : T it by letting µt(Q) = µΩ(f −1(Q)) (the pushforward
≥0 Σ t

measure of Q under ft), assigning to any event Q : Σ → P a probability equal to the

measure in Ω of its preimage under ft. However, the preimage ft
−1(Q) is not easy to

determine in general, as it may be the union of infnitely many small intervals scattered

throughout [0, 1] in a complicated arrangement depending on the structure of t.

The formal construction of ft
−1(Q) is deferred to Section 7.3, as it depends on the

tools of the AlgCo framework developed in Chapter 6. Still, we may hope at this point to

be able to choose a representation for sets of bitstrings. Since languages over fnite

alphabets are always countable, one possibility is the type N → option (list bool) of

nat-indexed sequences of optional bitstrings. Indeed, that was the original choice of

representation for earlier versions of this work, and it can be shown to possess a semiring

structure which allows for powerful equational reasoning (up to the appropriate

https://github.com/bagnalla/zar/blob/main/mu.v#L80

84

equivalence relation). However, we fnd a coinductive tree-based encoding (see

Section 7.3) of sets to be a more natural ft within the framework of AlgCo and so favor it

over the nat-indexed representation. Since this type is used to encode an analogue of the

class Σ1
0 of sets (see Section 2.8), we refer to it as ‘Sigma01’.

5.3 Equidistribution

To prove correctness of samplers generated by Zar, we show that any sequence of

samples produced by them is equidistributed with respect to the cwp semantics of the

input programs. Our strategy is to assume uniform distribution of the source of

randomness Ω, and “push it forward” through the sampler to obtain the desired result.

This section builds on the theory of uniform distribution modulo 1 – in particular, the class

Σ0
1 of countable unions of rational bounded intervals – adapted to collections of bitstreams.

Uniform distribution of Ω We assume access to a uniformly distributed unending

sequence of bitstreams. But what does it mean for a sequence of bitstreams to be

uniformly distributed? We cannot simply assert that any two bitstreams occur with equal

probability, since any particular bitstream may have probability zero, even for nonuniform

distributions. Instead, we turn to a variation of the classic notion of “uniform distribution

modulo 1” [KN12], generalized to the class Σ0
1 of subsets of 2N . S∞A subset U ⊆ P(2N) is said to be Σ0

1 when it is equal to i B(ωi) for some countable

collection {B(ωi)} of basic sets. We remark that ft
−1(Q) is Σ0 for all Q : Σ → P and t : T it .1 Σ

The required notion of uniform distribution now follows:

Defnition 50 (Σ0
1-u.d.). A sequence {xi} of bitstreams is Σ0

1-uniformly distributed (Σ0
1-u.d.)

when for every U : Σ0
1,

n−1X1
lim [xi ∈ U] = µΩ(U).
n→∞ n

i=0

https://github.com/bagnalla/zar/blob/main/equidistribution.v#L71

85

Sampling correctness for interaction tree samplers can then be stated by the

following equidistribution theorem (recall that ft denotes the interpretation of ITree t as a

measurable function ft : Ω * Σ):

Theorem 9 (ITree equidistribution). Let A be a type, t : TA
it be an interaction tree sampler

over A, σ : Σ be a program state, {xn} be a Σ0-u.d. sequence of bitstreams, and Q : Σ → P1

be a predicate over program states, Then, the sequence { ft(xn)} of samples is

itwp-equidistributed with respect to t:

n−1X1
lim [Q (ft(xi))] = itwp t [Q].
n→∞ n

i=0

Theorem 9 is proved by reduction to an analogous theorem on cotrees (Theorem 23),

the details of which are given in Section 7.4 using the tools of the AlgCo framework. The

basic idea is to show that itwp t [Q] is equal to µΩ(ft
−1(Q)) (the measure of the preimage of

Q under ft). The goal then follows immediately by our assumption that {xn} is Σ1
0-u.d. (by

letting U = ft
−1(Q) in Defnition 118).

The ITree equidistribution theorem assumes that every bitstream xn produces a

corresponding sample ft(xn), i.e., that the sampler terminates on every xn. This is a subtle

point, because earlier we assumed only that the program t was compiled from terminates

with probability 1, not necessarily for every possible bitstream (see Section 7.3 for related

discussion). However, since the set of bitstreams for which such a sampler diverges has

measure 0, the probability of any particular bitstream generated uniformly at random

belonging to that set is 0. It follows that the probability of a divergent bitstream occurring

in {xn} is 0 and so our equidistribution theorem holds with probability 1 for any t that

terminates with probability 1.

Finally, the equidistribution result can be lifted to samplers compiled from cpGCL

programs through Theorems 3 and 8.

https://github.com/bagnalla/zar/blob/main/equidistribution.v#L506

86

Theorem 10 (cpGCL equidistribution). Let c : cpGCL be a command, σ : Σ a program

state, {xn} a Σ0-u.d. sequence of bitstreams, Q : Σ → P a predicate over program states,1

and t : T
Σ
it = cpGCL to itree c σ the ITree sampler compiled from c. Then, the sequence

{ ft(xn)} of samples is cwp-equidistributed with respect to c:

n−1X1
lim [Q (ft(xi))] = cwp c [Q] σ.
n→∞ n

i=0

The proof of Theorem 10 makes substantial use of the AlgCo framework, so we defer

its details to Chapter 7 after having introduced the basic concepts of algebraic

coinductives in Chapter 6.

https://github.com/bagnalla/zar/blob/main/equidistribution.v#L506

87

6 Algebraic Coinductives
Natura non facit saltus.

Leibniz

This chapter presents AlgCo (Algebraic Coinductives), a practical framework for

inductive reasoning over coinductive types such as conats, streams, and infnitary trees

with fnite branching factor. The key idea is to exploit the notion of algebraic CPO from

domain theory to defne continuous operations over coinductive types via primitive

recursion on “dense” collections of their elements, enabling a convenient strategy for

reasoning about algebraic coinductives by straightforward proofs by induction. We

implement the AlgCo library in Coq and demonstrate its utility by verifying a stream

variant of the sieve of Eratosthenes, a regular expression library based on coinductive

tries, and weakest pre-expectation semantics for potentially nonterminating sampling

processes over discrete probability distributions in the random bit model.

We begin by motivating the need for a canonical elimination principle for coinductive

types (Section 6.1). We then provide introductions to the basic notions of algebraic CPOs

(Section 6.2), (co-)continuous extensions (Sections 6.3 and 6.4), and (co-)continuous

properties (Section 6.5). Finally, we give concrete examples of algebraic CPOs and their

applications to conats (Section 6.6), streams (Section 6.7), and infnitary tries

(Section 6.8). The primary application of the AlgCo framework to coinductive binary

trees is described in detail in Chapter 7.

6.1 Appetite for Elimination

As a tool for defning and proving correctness of computations over well-founded

data, the principle of induction is intimately familiar to most computer scientists.

Consequently, proof assistants like Coq and Agda provide ergonomic support for

88

programming and proving with induction [INR22, Tea22]. The dual principle of

coinduction [KS17], on the other hand, is not nearly as well supported.

Coinduction provides a natural means for programming with and verifying properties

of infnitary structures such as conats (natural numbers extended with a “point at

infnity”), streams (infnite lists) [Chl22], and potentially nonterminating decision

processes such as samplers for discrete distributions compiled from probabilistic

programs (Section 4.5). However, coinductive reasoning has a tendency to betray

intuition, and proof assistants like Coq and Agda are designed with a noticeable bias

toward induction, which can exacerbate the inherently unintuitive nature of coinduction.

As a result, the use of coinduction in a proof assistant is often plagued by technical snags

due to rigid syntactic guardedness conditions (limiting the range of allowable coinductive

defnitions), and the generation of coinduction hypotheses that interact poorly with

automation tactics [HNDV13, Chl22]). Hur et al. proposed – and Pous later

generalized [Pou16] – parameterized coinduction (paco [HNDV13]) as a way to address

rigid syntactic checks through the use of a semantic notion of guardedness. While paco

substantially upgrades coinduction in Coq, it does not represent a fundamental departure

from primitive coinduction.

We propose an alternative strategy: instead of generalizing coinduction in Coq (e.g.,

as paco does to semantic guardedness), we consider a subset of coinductive types – those

corresponding to algebraic CPOs [Jun90, Gun92] – for which a completely different

strategy can be applied for reasoning about coinductive programs that is more suited to the

inherently inductive disposition of proof assistants like Coq.

To illustrate our approach, consider the problem of defning a flter operation for

coinductive streams (i.e., infnite lists). In Haskell, it is possible to flter a stream by a

given predicate – e.g., the stream of even numbers is given by [n | n ← [0..], n ‘mod‘ 2 = 0].

We can attempt to implement a similar flter operation for streams in Coq as follows:

89

CoFixpoint flter (P : N → B) (s : Stream N) ,
match s with Cons n s’ ⇒

if P n then Cons n (flter P s’) else flter P s’
end.

This defnition is rejected, however, due to presence of an unguarded recursive call

(not wrapped in a Cons constructor) in the ‘else’ branch. Indeed, it is a good thing that it

is rejected, or else we could create a divergent term (rendering the logic of Coq

inconsistent) by fltering any stream by P := λ . false. While there may be specifc

circumstances in which we could prove it safe to flter a stream by a given predicate (i.e.,

when the resulting stream will be “productive” [Chl22]), we cannot do that because flter

is not defnable in the frst place.

A common solution (taken, e.g., by Xia et al. in the interaction tree

library [XZH+20]) is to add a constructor to the stream type for so-called “silent steps”

(Tau nodes). Tau nodes trivially satisfy the guardedness checker – wrap unguarded

co-recursive calls by applications of Tau – but lead to extra cases in defnitions and proofs,

and to unnecessary execution overhead. Moreover, replacing points of divergence with

infnite sequences of Taus passes the responsibility of handling divergence to consumers

of the stream, leading to complications in subsequent computation and analysis.

As an example of a complication of Tau, consider taking the infnite sum of a stream

of reals in which Tau nodes can appear. Lacking a general induction principle for streams,

we resort to a coinductive relation between streams and their sums (where R∞
≥0 denotes the

nonnegative reals extended with +∞, necessary in case of divergent series):

CoInductive sum : Stream R∞ → R∞ → P ,
≥0 ≥0

| sum tau : ∀ s r, sum s r → sum (Tau s) r
| sum cons : ∀ s x r, sum s r → sum (Cons x s) (x + r).

and attempt to prove that the relation is functional:

90

Lemma sum functional (s : Stream R∞) (a b : R∞) :
≥0 ≥0

sum s a → sum s b → a = b.
Proof. ... Abort. (* unprovable *)

But sum functional is unprovable because it isn’t true. The problem is that coinductive

relations are interpreted as the greatest relations closed under their rules, and so tend to

relate more pairs of elements than intended. E.g., the stream Ω , Tau Ω is related by sum

to every r : R, so sum is clearly not a functional (i.e., deterministic) relation because, e.g.,

sum Ω 0 and sum Ω 1, but 0 , 1). We could constrain the lemma to apply only to streams

containing no infnite sequences of Taus, but then we take on the burden of proving this

side condition for all of our stream constructions. Defning the sum relation via paco does

not help because it suffers from the same fundamental problem, being defned as the

greatest fxed point of a monotone functional.

We take an alternative approach (similar to that in [RN22]) for defning sum inspired

by domain theory. We frst defne an inductive analogue of sum on lists:

Fixpoint lsum (l : List R∞
≥0) : R∞

≥0 ,
match l with
| nil ⇒ 0
| cons x l’ ⇒ x + lsum l’
end.

and then for s : Stream R∞
≥0 we defne sum s : R∞

≥0 , sup {lsum l | l is a fnite prefx of s}.

This defnition of sum maps every stream to a unique element of R∞
≥0, even in the presence

of Tau nodes. We may ask: under what conditions is it possible to defne functional

mappings on coinductives in this way? For the answer we turn to a fundamental result of

domain theory (Lemma 5):

- R
≥
∞

0 is a CPO (complete partial order),

- Stream R∞
≥0 is an algebraic CPO,

- and nsum is monotone.

91

We call sum the continuous extension of lsum. It is continuous by construction, and

many proofs about it (specifcally, proofs of continuous properties, see Section 6.5) can be

reduced to straightforward proofs by induction over lists. Moreover, every continuous

be obtained in this way, that is, as the continuous extension of a monotone function over

fnite elements.

A basic connection between coinductive types and CPOs that can be understood as

follows: A coinductive type, interpreted as the fnal coalgebra of a given functor [Hag89],

is equipped (by fnality) with a canonical introduction principle for defning elements of

the type. The completeness property of a CPO can likewise be viewed as a kind of

introduction principle for which elements of the CPO are introduced as suprema of

∞
0≥

directed sets of approximations. Thus coinductive types naturally form CPOs (e.g., the

type of streams can be seen as the “completion” of the type of lists wrt. suprema of

directed sets [Adá21]). Furthermore, by exploiting algebraicity (the existence of a dense

compact subset) of the domain and completeness of the codomain (in this case

function from streams into R (or indeed, from any algebraic CPO into another CPO) can

∞
≥

∞
≥0 0

principle for algebraic domains (Lemma 5) for defning continuous functions like flter

and sum as well as continuous predicates and relations (Section 6.5) over them.

In this chapter we elucidate the power and generality of the concept of algebraic

CPOs by providing a comprehensive framework (AlgCo, short for Algebraic

Coinductives) for programming and proving with continuous functions in Coq over the

class of coinductive types forming algebraic CPOs (including commonly used structures

such as conats, streams, and infnitary trees), and demonstrate its utility on a handful of

interesting use cases including the semantics of probabilistic programming languages

(Chapter 7). In Section 6.7.1, we show that the aforementioned flter operation can be

defned with the tools of AlgCo without the need for Tau nodes at all.

Stream R and R , respectively), we are able to provide a continuous elimination

92

Limitations of AlgCo Continuous extensions such as sum : Stream R∞ → R∞
≥0 ≥0

described above are defned via a nonconstructive supremum operator (see Section 2.10)

and thus are not computable in general. However, we provide Haskell extraction

primitives for some special cases (e.g., lazy coiteration (Section 6.6.2) and cofolds

(Section 6.7.1)) that suffice to cover a wide range of practically useful operations. See

Section 6.7.5 for discussion on the issue of computability of continuous extensions.

The techniques described in this chapter apply only to types which form algebraic

CPOs. While this includes many useful coinductive types such as streams and infnitary

binary trees, there exist many interesting types for which it does not apply, e.g., trees that

are infnite in both depth and breadth.

Computing Suprema Although suprema of directed sets are not generally computable,

we can use the axioms of indefnite description and excluded middle [Cha17] to defne a

sup (inf) operator (special cases of Hilbert’s epsilon operator [coq23a]) allowing succinct

expression of suprema (infma) in a classical style within computational contexts in

Coq [Cha10]. We defne sup : (N → A) → A such that sup f is the supremum of any

directed f : N → A, and inf : (N → A) → A such that inf f is the infmum of any

downward-directed f : N → A. Any attempt to compute with these operators will become

blocked [Ler15], but in some special cases, they can be implemented by extraction

primitives for lazy execution in Haskell (see Sections 3.2 and 6.7.5 for discussion).

6.2 Algebraic CPOs

A CPO is traditionally said to be algebraic when it contains a subset of “basis”

elements that can be used to approximate any element of the domain [Gun92]. These basis

elements are required to be compact:

https://github.com/bagnalla/algco/blob/main/cpo.v#L93
https://github.com/bagnalla/algco/blob/main/cpo.v#L106
https://github.com/bagnalla/algco/blob/main/cpo.v#L93
https://github.com/bagnalla/algco/blob/main/cpo.v#L106

93

Defnition 51 (Compact element). Let A be an ordered type. An element x : A is compact

when for every directed collection U : N → A such that sup U = x, there exists an i : N

such that U i = x.

An element x is compact when it can only be trivially approximated, i.e., when any

directed set that “converges” to x must contain x itself. Elements of many data types

(including binary trees) are compact precisely when they are fnite (but this is not always

the case, see, e.g., [Gun92, Section 5.1]), thus it is usually reasonable to think of

compactness as simply an alternate defnition of fniteness providing a more “extensional”

characterization of what it means to be fnite.

Although compact elements are not necessarily fnite, they are fnitely approximable,

i.e., any directed set “converging” to a compact element x contains a fnite subset that also

converges to x (see Section 6.8 for an algebraic CPO whose basis elements are compact

but not fnite). We say that a type A is compact when every x : A is compact. Compactness

is essential for us because it coincides with the presence of an induction principle; a key

idea of algebraic coinductives is to reduce reasoning about continuous functions over

coinductive types to purely inductive reasoning over basis elements (see, e.g., Lemmas 13,

14, 23, 24 and Theorems 16, 17).

Defnition 52 (Compact type). An ordered type A is compact when x is compact for every

x : A.

An essential fact about compact types is that all monotone functions on them are

trivially continuous:

Lemma 4 (Monotone functions on compact types are continuous). Let A be a compact

ordered type, B an ordered type, and f : A → B a monotone function. Then, f is

continuous.

https://github.com/bagnalla/algco/blob/main/aCPO.v#L34
https://github.com/bagnalla/algco/blob/main/aCPO.v#L39
https://github.com/bagnalla/algco/blob/main/aCPO.v#L79

94

We adapt the traditional defnition of algebraicity to a type-theoretic framework by

saying that a CPO A is algebraic when there exists a basis type B that can be injected into

A (hence is like a subset of A) and is “dense” in A, i.e., all elements of A can be obtained

as suprema of directed collections of elements of B injected into A. Think by analogy of

the rational and real numbers: the rationals are fnitely representable and thus compact,

and any real number can be obtained as the supremum of a collection of rationals injected
√

into the reals (e.g., 2 = sup {x : Q | x2 < 2}).

Defnition 53 (Dense). Let A be an ω-CPO and B an ordered type. B is dense in A when

there exist continuous operations

inclB,A : B → A

idlB,A : A → N → B

such that for all a : A,

idlB,A a is an ω-chain, and sup (inclB,A ◦ idlB,A a) = a.

The idl operator (read “ideal”) applied to element x : A produces an ω-chain of basis

elements whose injections into A converge to x. Strictly speaking, we should only require

idl to produce directed sets, but we choose to constrain to ω-chains in hopes of developing

a useful notion of general computability of continuous extensions in the future. We omit

the subscripts on idl and incl when they are clear from context.

Defnition 54 (Algebraic CPO). Let A be an ω-CPO and B an ordered type. A is an

algebraic CPO (aCPO) with basis B when B is compact and dense in A.

We let B(A) denote the basis of algebraic CPO A. Some authors (e.g., [Sco70, AJ94])

do not require the basis to be compact (reserving the name algebraic CPO for when it is).

Algebraic CPOs are closed under the formation of products and sums. The type A → B is

an algebraic CPO when A is fnite and B is an algebraic CPO.

https://github.com/bagnalla/algco/blob/main/aCPO.v#L45
https://github.com/bagnalla/algco/blob/main/aCPO.v#L51
https://github.com/bagnalla/algco/blob/main/prod.v#L85
https://github.com/bagnalla/algco/blob/main/sum.v#L115

95

6.3 Continuous Extensions

A key idea of the AlgCo framework is to defne continuous functions on algebraic

CPOs as continuous extensions of simpler monotone functions on basis elements,

formally characterized by the following lemma (based on [Gun92, Lemma 5.24]):

Lemma 5 (Continuous extension). Let A be an algebraic CPO, C a CPO, and

f : B(A) → C a monotone function. Then, there exists a unique continuous function

f co : A → C (the continuous extension of basis function f) such that f co ◦ incl = f . I.e.,

the following diagram commutes:

B(A)

A C

f
incl

! f co

The main aspects of Lemma 5 are two-fold:

Existence. Any monotone function f : B(A) → C defned on the basis of an algebraic

CPO can be extended to a continuous function f co : A → C on the whole domain A.

Uniqueness. The extension is unique. Any continuous function completing the

diagram must be equal to f co .

The existence of f co constitutes a continuous elimination scheme for algebraic CPOs:

to defne a continuous function on algebraic CPO A, it suffices instead to defne a

monotone basis function f : B(A) → C (typically by induction, (see Section 6.7 and

Chapter 7)) and extend it to f co : A → C.

Moreover, uniqueness of f co implies that every continuous function g : A → C can be

represented as a continuous extension f co : A → C for some monotone basis function

f : B(A) → C, namely f = g ◦ incl (see Corollary 1).

Lemma 5 tells us that the continuous functions on algebraic CPOs are precisely the

functions that can be “easily” defned (as extensions of basis functions), and gives rise to a

https://github.com/bagnalla/algco/blob/main/aCPO.v#L626
https://github.com/bagnalla/algco/blob/main/aCPO.v#L122

96

collection of powerful proof principles (e.g., Lemma 6 and Theorem 14) for reasoning

about them.

6.3.1 Existence and Uniqueness of Continuous Extensions

We divide the proof of Lemma 5 into two separate theorems for the existence and

uniqueness of continuous extensions. Existence yields the defnitional principle for

continuous extensions:

Theorem 11 (Existence of continuous extensions). Let A be an algebraic CPO, C any

CPO, and f : B(A) → C a monotone function. Defne

f co a , sup (f ◦ idl a).

Then,

f co ◦ incl = f .

I.e., the following diagram commutes:

B(A)

A C

f
incl

f co

And uniqueness of continuous extensions yields the fundamental proof principle:

Theorem 12 (Uniqueness of continuous extensions). Let A be an algebraic CPO, C any

CPO, f : B(A) → C a monotone function on the basis of A, and g : A → C a continuous

function on A such that:

g ◦ incl = f ,

https://github.com/bagnalla/algco/blob/main/aCPO.v#L197
https://github.com/bagnalla/algco/blob/main/aCPO.v#L122
https://github.com/bagnalla/algco/blob/main/aCPO.v#L375

97

i.e., that the following diagram commutes:

B(A)

A C

f
incl

g

f coThen, g = .

6.3.2 Proof Principles for Continuous Extensions

Theorem 12 immediately yields a useful proof principle: to show that continuous

functions f and g are equal, it suffices to show that they are both solutions for x to the

equation ‘x ◦ incl = f ’. Another useful corollary of Theorem 12 is the following principle

for proving equality of continuous extensions via reduction to equality on basis elements.

Lemma 6 (Equivalence of continuous extensions). Let A be an algebraic CPO, C any

CPO, and f : B(A) → C and g : B(A) → C monotone functions on the basis of A. Then,

= g ⇒ f co cof = g .

a = gcoLemma 6 is extremely useful in practice: to show f co a for all a : A, it suffices

to show f b = g b for all b : B(A), which can often be proved by straightforward induction.

The following generalized point-wise form of the equivalence principle is more

powerful than Lemma 6 because it remembers that the basis elements in the antecedent

are approximations of the elements appearing in the goal, which may be important when

the equality being proved is contingent on some precondition.

Lemma 7 (Generalized equivalence of continuous extensions). Let A and B be algebraic

CPOs, C any CPO, f : B(A) → C, g : B(B) → C monotone functions, a : A and b : B.

Then,

co b.∀ i : N, f (idl a i) = g (idl b i) ⇒ f co a = g

https://github.com/bagnalla/algco/blob/main/aCPO.v#L800
https://github.com/bagnalla/algco/blob/main/aCPO.v#L800

98

We also have the eponymous fact that continuous extensions are continuous:

Theorem 13 (Continuous extensions are continuous). Let A be an algebraic CPO, C any

CPO, and f : B(A) → C a monotone function. Then, f co is continuous.

While an obvious result, the usefulness of Theorem 13 should not be understated. Ad

hoc proofs of continuity are often difficult and time consuming. By defning our functions

as continuous extensions, we obtain proofs of their continuity for free!

The following corollary, a fairly direct consequence of Theorem 12, shows that every

continuous function g : A → C can be expressed as the continuous extension (g ◦ incl)co .

Corollary 1 (Representation of continuous functions). Let A be an algebraic CPO, C any

CPO, and g : A → C a continuous function. Then,

g = (g ◦ incl)co .

Fusion It is well-known from Calculus that continuous real-valued functions are closed

under composition. Likewise, the following fusion law for continuous extensions shows

that any composition of the form g ◦ f co where g is continuous is equal to the continuous

extension (g ◦ f)co .

Theorem 14 (Fusion). Let A be an algebraic CPO, B and C CPOs, f : B(A) → B a

monotone function, and g : B → C a continuous function. Then,

g ◦ f co = (g ◦ f)co .

Furthermore, since continuous extensions are continuous (Theorem 13), we have as a

special case for all monotone f : B(A) → B and g : B(B) → C:

co ◦ f co co ◦ f)cog = (g .

https://github.com/bagnalla/algco/blob/main/aCPO.v#L300
https://github.com/bagnalla/algco/blob/main/aCPO.v#L971
https://github.com/bagnalla/algco/blob/main/aCPO.v#L1105

99

A further consequence of the fusion law is that any chain of continuous compositions

can be written as a single continuous extension so long as the rightmost (the one directly

receiving the input) in the chain is a continuous extension:

gn ◦ ... ◦ g0 ◦ f co = (gn ◦ ... ◦ g0 ◦ f)co

which, by Corollary 1, can be generalized to arbitrary continuous functions:

gn ◦ ... ◦ g0 = (gn ◦ ... ◦ g0 ◦ incl)co .

6.4 Cocontinuous Extensions

We can also obtain cocontinuous functions (Defnition 14) over an algebraic CPO as

cocontinuous extensions of antimonotone basis functions. Every proof principle for

continuous extensions has an analogue for cocontinuous extensions. We list only the

essential lemma here:

Lemma 8 (Cocontinuous extension). Let A be an algebraic CPO, C any lCPO, and

f : B(A) → C an antimonotone function. Then, there exists a unique cocontinuous

function f cô : A → C (the cocontinuous extension of basis function f) such that

f cô ◦ incl = f . I.e., the following diagram commutes:

B(A)

A C

f
incl

! f ĉo

Gallery of Fusion Cocontinuous extensions entail a handful of additional fusion laws to

complement Theorem 14:

Theorem 15 (Fusion cont’d). Let A be an algebraic CPO, f : B(A) → B, and g : B → C.

For lCPOs B and C, antimonotone f , and l-continuous g,

co cog ◦ f ˆ = (g ◦ f) ˆ .

https://github.com/bagnalla/algco/blob/main/aCPO.v#L758
https://github.com/bagnalla/algco/blob/main/aCPO.v#L122
https://github.com/bagnalla/algco/blob/main/aCPO.v#L1149

100

For CPO B, lCPO C, monotone f , and cocontinuous g,

g ◦ f co co = (g ◦ f) ˆ .

For lCPO B, CPO C, antimonotone f , and l-cocontinuous g,

co = (g ◦ f)cog ◦ f ˆ .

6.5 (Co-)continuous Properties

Continuous functions with codomain P are called continuous properties. Continuous

properties on an algebraic CPO A can be defned as continuous extensions of monotone

properties on B(A). By specializing the defnition of monotonicity to algebraic CPO A and

codomain P, we see that a property P : B(A) → P is monotone when:

x v y ⇒ P x ⇒ P y.

I.e., P is monotone when its holding on some approximation x implies its holding on

all further refnements of x (all y such that x v y). What then does it mean for a property

to be continuous? Recalling that a function f : A → B is ω-continuous when for every

ω-chain C : N → A,

f (sup C) ' sup (f ◦ C)

specialized to Pco : A → P:

Pco (sup C) ⇐⇒ sup (Pco ◦ C)

or, equivalently (by Defnition 53 and Remark 1):

Pco a ⇐⇒ ∃i. P (idl a i).

We see that the property Pco holds on element a : A if and only if its restriction to

B(A) holds for some approximation of a. This leads us to the defnition of continuous

property:

101

Defnition 55 (Continuous property). Let A be an algebraic CPO. A predicate P : A → P

is a continuous property on A when for all a : A:

P a ⇐⇒ ∃i. P (incl (idl a i)).

We remark that by Corollary 1, every continuous property on algebraic CPO A can be

expressed as a continuous extension of the form Pco for some monotone P : B(A) → P.

We also remark that continuous extensions of decidable properties are semi-decidable.

We derive introduction and elimination principles for continuous extensions of

monotone P : B(A) → P:

co-intro co-elim

P (idl a i) Pco a

Pco a ∃i.P (idl a i).

The dual notion of cocontinuous property now follows:

Defnition 56 (Cocontinuous property). Let A be an algebraic CPO. A predicate

P : A → P is a cocontinuous property on A when for all a : A:

P a ⇐⇒ ∀i. P (incl (idl a i)).

I.e., a cocontinuous property P : A → P holds on element a : A if and only iff its

restriction to B(A) holds for all approximations of a. We derive introduction and

elimination principles for cocontinuous extensions of antimonotone P : B(A) → P:

cô-intro cô-elim
co∀i, P (idl a i) P ˆ a

coP ˆ a P (idl a i).

https://github.com/bagnalla/algco/blob/main/aCPO.v#L839
https://github.com/bagnalla/algco/blob/main/aCPO.v#L869
https://github.com/bagnalla/algco/blob/main/aCPO.v#L852
https://github.com/bagnalla/algco/blob/main/aCPO.v#L883

102

6.6 Conats

Our frst concrete example of a coinductive algebraic CPO is the type Nco of conats,

the natural numbers extended with a “point at infnity” ωN.

Defnition 57 (Nco (conat)). Defne the type Nco of conats coinductively by the formation

rules:

conat-succ
conat-zero

n : Nco

cozero : Nco cosucc n : Nco

Defnition 58 (ωN). Defne the infnite conat ωN by coinduction:

ωN , cosucc ωN.

The order relation on Nco is the usual ordering of natural numbers extended so that

n v ωN for all n : Nco .

Remark 4 (Nco is a CPO). The inductive type N is not a CPO because there exist directed

sets of natural numbers (e.g., N itself) which have no upper bound and thus no supremum.

Conats, on the other hand, have suprema for all sets, because n v ωN for all n : Nco .

The type of N natural numbers serves as a compact basis for Nco, where the inclusion

: Nco → N → Nmap inclN,Nco : N → Nco injects natural numbers into Nco, and idlN,Nco

generates convergent chains of fnite approximations of conats.

Defnition 59 (inclN,Nco). For n : N, defne inclN,Nco n : Nco by induction on n:

: N → NcoinclN,Nco

O , cozero

S n , cosucc (inclN,Nco n)

https://github.com/bagnalla/algco/blob/main/conat.v#L34
https://github.com/bagnalla/algco/blob/main/conat.v#L35
https://github.com/bagnalla/algco/blob/main/conat.v#L36
https://github.com/bagnalla/algco/blob/main/conat.v#L38
https://github.com/bagnalla/algco/blob/main/conat.v#L506
https://github.com/bagnalla/algco/blob/main/conat.v#L97
https://github.com/bagnalla/algco/blob/main/conat.v#L240
https://github.com/bagnalla/algco/blob/main/conat.v#L97

103

Defnition 60 (idlN,Nco). For n : Nco , and i : N, defne idlN,Nco n i : N by induction on i:

: Nco → N → NcoidlN,Nco

cozero , O

O , O

(cosucc n) (S i) , S (idlN,Nco n i)

Remark 5 (N is compact).

Remark 6 (N is dense in Nco). For all n : Nco ,

idl n is an ω-chain, and

sup (incl ◦ idl n) = n.

Remark 7 (Nco is a pointed algebraic CPO with bottom element cozero and basis N).

6.6.1 Coinductive Extensionality

The usual notion of propositional (Leibniz) equality in Coq is too weak to prove

equalities over coinductive types such as Nco (Defnition 57). For example, suppose we

defne a function coplus : Nco → Nco → Nco for taking the sum of two conats. We quickly

become stuck when trying to prove basic properties such as commutativity:

∀n m, coplus n m = coplus m n. Typically the proof would proceed by induction on either

n or m, but here neither term is inductive. We cannot use coinduction either because the

goal is not coinductive.

An alternative is to defne a coinductive bisimulation relation that holds between n

and m iff they are structurally identical:

Defnition 61 (Nco Equivalence). Defne =Nco : Nco → Nco → P coinductively by the

inference rules:
=Nco -succ

=Nco -zero
n =Nco m

cozero =Nco cozero cosucc n =Nco cosucc m

https://github.com/bagnalla/algco/blob/main/conat.v#L240
https://github.com/bagnalla/algco/blob/main/conat.v#L738
https://github.com/bagnalla/algco/blob/main/conat.v#L751
https://github.com/bagnalla/algco/blob/main/colist.v#L678
https://github.com/bagnalla/algco/blob/main/conat.v#L123
https://github.com/bagnalla/algco/blob/main/conat.v#L124
https://github.com/bagnalla/algco/blob/main/conat.v#L125

104

Now we can prove commutativity up to =Nco via coinduction:

∀n m, coplus n m =Nco coplus m n. The problem with this approach, however, is that if we

want to rewrite by such equations we have to explicitly prove that all of our operations on

Nco are proper with respect to =Nco . But note that =Nco is carefully designed to coincide

exactly with Leibniz equality. Although it cannot be proved within Coq, we can assert this

fact in the form of an extensionality axiom (Axiom 4) that deduces Leibniz equality on

conats from proofs of bisimilarity, allows us to easily rewrite by them without the need for

any Proper instances [Soz09].

Axiom 4 (Conat extensionality). ∀ n m : Nco , n ' Nco m ⇒ n = m.

To gain confdence in the soundness of Axiom 4, notice that Nco modulo =Nco is

isomorphic to the type N + 1, because every conat is either a fnite natural number or the

infnite conat ωN. Let sect : Nco → N + 1 and retr : N + 1 → Nco witness this

isomorphism. We can derive conat extensionality as a theorem from one side of the

isomorphism: ∀n : Nco , retr (sect n) = n. That is, conat extensionality may be derived

from the fact that injecting a conat into N + 1 and then projecting it back reproduces the

original conat.

Similar arguments can be made for streams (Section 6.7), cotries (Section 6.8), and

cotrees (Chapter 7). See [Bou18, Section 2.2.2] and [Gro23] for more discussion on

soundness of extensionality axioms for coinductive types.

6.6.2 Unlimited Fuel

When a function is not inductive on the structure of any of its arguments, a common

trick (sometimes called step-indexing [Ahm04]) is to defne it instead by induction on a

separate N argument (the fuel), and ensure that enough fuel is always provided for the

function to complete its task. We defne fueled computations via the following ‘iter’

https://github.com/bagnalla/algco/blob/main/conat.v#L92
https://github.com/bagnalla/algco/blob/main/conat.v#L785
https://github.com/bagnalla/algco/blob/main/conat.v#L785
https://github.com/bagnalla/algco/blob/main/conat.v#L111
https://github.com/bagnalla/algco/blob/main/conat.v#L117
https://github.com/bagnalla/algco/blob/main/conat.v#L205
https://github.com/bagnalla/algco/blob/main/conat.v#L202
https://github.com/bagnalla/algco/blob/main/conat.v#L202

105

construction that, starting from initial element z, repeatedly applies a function f until

exhausting the fuel.

Defnition 62 (iter). For type A, z : A, f : A → A, and n : N, defne iter z f n : A by

induction on n:

iter z f : N → A

O , z

S n , f (iter f n)

By taking the continuous extension of a fueled iteration, we extend its domain to

include ωN, allowing it to be supplied an unlimited amount of fuel!

Defnition 63 (coiter). For pointed type A and f : A → A, defne coiter f : Nco → A by:

coiter f , (iter ⊥A f)co ,

or when A has a top element >A, defne ĉoiter f : Nco → A:

ˆ co .coiter f , (iter >A f) ˆ

We call this technique lazy coiteration, and use it to implement the Kleene closure

operator (as an infnitely fueled coiteration) on a coinductive encoding of regular

languages in Section 6.8.1.

The following lemma is useful for proving continuity of lazy coiterations.

Lemma 9 ((Co-)continuous coiter). Let A be an ordered type, z : A, and f : A → A a

monotone function. Then,

(∀ n : N, z v iter z f n) ⇒ iter z f is monotone,

(∀ n : N, iter z f n v z) ⇒ iter z f is antimonotone, and

coiter f is continuous and ĉoiter f is cocontinuous.

https://github.com/bagnalla/algco/blob/main/conat.v#L600
https://github.com/bagnalla/algco/blob/main/conat.v#L827
https://github.com/bagnalla/algco/blob/main/conat.v#L800
https://github.com/bagnalla/algco/blob/main/conat.v#L814
https://github.com/bagnalla/algco/blob/main/aCPO.v#L300
https://github.com/bagnalla/algco/blob/main/aCPO.v#L324

106

coiter =

\ o p f n ->

case n of

Cozero -> bot o p

Cosucc n’ -> f (coiter o p f n’)

Figure 6.1: Haskell extraction primitive for coiter. Parameters o and p are OType and

PType instance dictionary objects for the order relation of the codomain.

Coiter computation We implement an extraction primitive for coiter (shown in

Figure 6.1) for lazy execution of coiterations in Haskell. Further discussion on

computability and extraction of continuous extensions appears in Section 6.7.5. We justify

the extraction primitive with the following generic computation lemma (from which

analogous computation rules can be derived for specifc coiterations):

Lemma 10 (coiter computation). Let A be a pointed CPO and f : A → A continuous.

Then,

coiter f cozero ' ⊥A

coiter f (cosucc n) ' f (coiter f n).

Recall that ‘'‘ stands for order equivalence (Defnition 9), which often implies

propositional equality (e.g., for R∞
≥0 by antisymmetry and Nco by Axiom 4).

6.7 Streams

In this section we defne streams (or colists) as a coinductive algebraic CPO

(Defnition 64), defne a number of essential operations and predicates over them

(including the oft-problematic ‘flter’ operation) (Section 6.7.1), and illustrate the use of

the basic proof principles of AlgCo to reason about streams (Section 6.7.2), culminating

in the verifcation of a coinductive variant of the sieve of Eratosthenes (Section 6.7.4).

https://github.com/bagnalla/algco/blob/main/order.v#L28
https://github.com/bagnalla/algco/blob/main/order.v#L62
https://github.com/bagnalla/algco/blob/main/conat.v#L872

107

Streams as an Algebraic CPO Our defnition of coinductive lists deviates slightly from

the standard defnition of streams (e.g., [Chl22]) by inclusion of a bottom element:

Defnition 64 (Streams). Defne the type L∗
A of streams with element type A coinductively

by the formation rules:

stream-cons
stream-bot

a : A l : L∗
A

⊥L∗ : L∗
A cocons a l : L∗

AA

We are careful not to regard ⊥L∗ as simply a nil constructor for streams, viewing it
A

instead as the undefned or divergent stream which loops forever producing no output (see

Section 6.7.5 for related discussion). Streams are ordered by a straightforward structural

prefx relation:

Defnition 65 (Stream order). For type A, defne vL∗ : L∗
A → L∗

A → P coinductively by the
A

inference rules:

vL∗ -bot vL∗ -cons A A

l : L∗
A a : A l1 vL∗ l2A

⊥L∗ vL∗ l cocons a l1 vL∗ cocons a l2A A A

Intuitively, we have l1 vL∗ l2 when either l1 is a ⊥-terminated fnite approximation of
A

l2, or when l1 and l2 are equal. A compact basis for L∗
A is given by the standard inductive

type LA of lists (with constructors nil and cons) with prefx ordering:

Defnition 66 (Lists). Defne the type LA of lists with element type A inductively by the

formation rules:

list-cons
list-nil

a : A l : LA

nil : LA cons a l : LA

https://github.com/bagnalla/algco/blob/main/colist.v#L34
https://github.com/bagnalla/algco/blob/main/colist.v#L35
https://github.com/bagnalla/algco/blob/main/colist.v#L36
https://github.com/bagnalla/algco/blob/main/colist.v#L47
https://github.com/bagnalla/algco/blob/main/colist.v#L48
https://github.com/bagnalla/algco/blob/main/colist.v#L49

108

Defnition 67 (List order). Defne vLA : LA → LA → P inductively by the inference rules:

vLA -nil vLA -cons

l : LA a : A l1 vLA l2

nil vLA l cons a l1 vLA cons a l2

Remark 8 (LA is compact). For any type A, the elements of LA are fnite and are thus

compact.

The inclusion map inclLA,L
∗ : LA → L∗ injects lists into L∗ , and
A A A

idlLA,L
∗ : L∗

A → N → LA generates convergent chains of list approximations of streams.
A

Defnition 68 (inclL,L∗). For type A and l : LA, defne inclLA,L
∗ l : L∗

A by induction on l:
A

inclLA,L
∗
A

: LA → L∗
A

nil , ⊥L∗ A

cons a l , cocons a (inclLA,L
∗ l)
A

Defnition 69 (idlL,L∗). For type A, l : L∗
A, and n : N, defne idlLA,L

∗ l n : LA by induction
A

on n:

idlLA,L
∗
A

: L∗
A → N → L∗

A

O , nil

⊥L∗ , nil
A

(cocons a l) (S n) , cons a (idlLA,L
∗ l n)
A

The type LA of fnite lists is dense in the type L∗
A of streams for any type A.

Remark 9 (LA is dense in L∗
A). Let A be a type. Then, for all a : L∗

A,

idl a is an ω-chain, and

sup (incl ◦ idl a) = a.

We also have ⊥L∗ A
v l for all l : L∗

A, and thus:

https://github.com/bagnalla/algco/blob/main/colist.v#L169
https://github.com/bagnalla/algco/blob/main/colist.v#L170
https://github.com/bagnalla/algco/blob/main/colist.v#L171
https://github.com/bagnalla/algco/blob/main/colist.v#L665
https://github.com/bagnalla/algco/blob/main/colist.v#L436
https://github.com/bagnalla/algco/blob/main/colist.v#L122
https://github.com/bagnalla/algco/blob/main/colist.v#L436
https://github.com/bagnalla/algco/blob/main/colist.v#L122
https://github.com/bagnalla/algco/blob/main/colist.v#L678

109

Remark 10 (L∗
A is a pointed algebraic CPO with basis LA).

The order relation on streams (Defnition 65) is carefully chosen to allow the

following extensionality axiom entailing propositional equality from order equivalence

(see Section 6.6.1 for discussion of such extensionality axioms for coinductive types):

Axiom 5 (Stream extensionality). Let A be a type. Then,

∀ l1 l2 : L∗
A, l1 'L∗ l2 ⇒ l1 = l2. A

Streams can be easily defned by primitive corecursion (via the CoFixpoint command

in Coq). For example, the following defnition of nats generates a stream of natural

numbers starting from an initial seed n : N (such that nats O is the stream of all natural

numbers):

Example 4 (nats). For n : N, defne the stream nats n : L∗
N of natural numbers starting

from n coinductively by:

nats n , cocons n (nats (S n)).

6.7.1 Cofolds

Many continuous extensions over streams share a common computational structure.

In this section we defne an abstraction over this common pattern (“cofolds”) and use it to

derive defnitions and computation rules for standard operations on streams. In

Section 6.7.5 we provide an extraction primitive for cofolds for lazy execution in Haskell.

The foundation for cofolds is given by the standard right-associative fold operator on lists:

Defnition 70 (fold). For types A and B, z : B, f : A → B → B, and l : LA, defne

fold z f l : B by induction on l:

fold z f : LA → B

nil , z

cons a l , f a (fold z f l)

https://github.com/bagnalla/algco/blob/main/colist.v#L678
https://github.com/bagnalla/algco/blob/main/colist.v#L92
https://github.com/bagnalla/algco/blob/main/sieve.v#L36
https://github.com/bagnalla/algco/blob/main/colist.v#L693

110

Operations of the form fold z f are often called catamorphisms [MFP91], or simply

folds. We introduce cofolds: continuous functions on streams of the form (fold ⊥ f)co for

monotone f , and anticofolds (written ĉofold): cocontinuous functions of the form

(fold > f)cô for antimonotone f .

Defnition 71 (cofold). For type A, pointed type B, and f : A → B → B, defne

cofold f : L∗
A → B by:

cofold f , (fold ⊥B f)co ,

or when B has a top element >B, defne ˆ A → B by: cofold f : L∗

ˆ co .cofold f , (fold >B f) ˆ

Lemma 11 ((Co)continuous cofold). Let A be a type and B an ordered type and suppose

that f a : B → B is monotone for every a : A. Then,

(∀ l : LA, z v fold z f l) ⇒ fold z f is monotone,

(∀ l : LA, fold z f l v z) ⇒ fold z f is antimonotone, and

cofold f is continuous and ĉofold f is cocontinuous.

Although cofolds can be seen as a coinductive analogue to catamorphisms, we should

be careful to distinguish them from anamorphisms, the true categorical dual to

catamorphisms. Whereas catamorphisms provide a canonical elimination principle for

inductives, and anamorphisms a canonical introduction principle for coinductives, the

continuous extension construction (Lemma 5) (of which cofolds are a special case) is

perhaps best understood as providing a canonical continuous elimination principle for

algebraic coinductives.

https://github.com/bagnalla/algco/blob/main/colist.v#L1211
https://github.com/bagnalla/algco/blob/main/colist.v#L712
https://github.com/bagnalla/algco/blob/main/colist.v#L742
https://github.com/bagnalla/algco/blob/main/aCPO.v#L300
https://github.com/bagnalla/algco/blob/main/aCPO.v#L324

111

Cofold computation The following generic computation lemma can be used to derive

computation rules for cofolds.

Lemma 12 (cofold computation). Let A be a type, B an ordered type, and

f : A → B → B. Then, if B is a pointed CPO and f a is continuous for every a,

cofold f ⊥L∗ ' ⊥BA

cofold f (cocons a l) ' f a (cofold f l),

or if B is an lCPO with a top element and f a is l-continuous for every a,

ˆ 'cofold f ⊥L∗ A
>B

ˆ ' cofold f l).cofold f (cocons a l) f a (ˆ

Example cofolds We present some illustrative cofolds over streams and derive their

computation rules from Lemma 12. We sometimes give explicit names to the basis

functions being continuously extended to make proofs about them more readable (e.g.,

Defnition 81 and Lemma 13). Our frst example is the cofold lengthL∗ mapping streams
A

to Nco such that the length of any infnite stream is equal to ωN.

Defnition 72 (lengthL∗). For type A, defne

A → NcolengthL∗ : L∗ , (fold cozero (λ . cosucc))co , with computation rules:
A

lengthL∗ ⊥L∗ = cozero
A A

lengthL∗ (cocons l) = cosucc (lengthL∗ l).
A A

And mapping a function over a stream:

Defnition 73 (mapL∗). For types A and B, and f : A → B, defne

f)comapL∗ f : L∗
A → L∗

B , (mapLA , where:
A

mapLA f , fold ⊥L∗ (λa. λl. cocons (f a) l)
B

with computation rules:

https://github.com/bagnalla/algco/blob/main/colist.v#L1221
https://github.com/bagnalla/algco/blob/main/colist.v#L1208
https://github.com/bagnalla/algco/blob/main/colist.v#L1764
https://github.com/bagnalla/algco/blob/main/colist.v#L1721
https://github.com/bagnalla/algco/blob/main/colist.v#L1710
https://github.com/bagnalla/algco/blob/main/colist.v#L1733

112

mapL∗ f ⊥L∗ = ⊥L∗ A A A

mapL∗ f (cocons a l) = cocons (f a) (mapL∗ f l).
A A

The infnite sum over a stream of extended reals is expressed as the cofold sumL∗ R∞
≥0

mapping streams of extended reals into R∞
≥0:

coDefnition 74 (sumL∗). Defne sumL∗ : LR
∗
∞ → R

≥
∞

0 , sumLR∞ , where:
R∞ R∞

≥0 ≥0≥0 ≥0

sumLR∞ , fold 0 (λx. λy. x + y)
≥0

with computation rules:

sumL∗ R∞
⊥L∗ A

= 0
≥0

sumL∗ (cocons a l) = a + sumL∗ l.
R∞ R∞
≥0 ≥0

Quantifying Predicates Over Streams A common task is to assert that a property

holds for some element appearing in a stream. We defne existential quantifcation over

streams as a continuous property as follows:

Defnition 75 (∃co). For type A and predicate P : A → P, defneP

∃co : L∗
A → P , (fold ⊥ (λa : A. λQ : P. P a ∨ Q))co , with derived introduction and P

elimination rules:

∃co-intro-1P ∃co-intro-2P ∃co-elimP

P a l : L∗
A a : A ∃co

P l ∃co
P (cocons a l)

∃co
P (cocons a l) ∃co

P (cocons a l) P a ∨ ∃co
P l

Dually, we defne universal quantifcation over streams as a cocontinuous property as

follows:

https://github.com/bagnalla/algco/blob/main/colist.v#L1752
https://github.com/bagnalla/algco/blob/main/colist.v#L1743
https://github.com/bagnalla/algco/blob/main/colist.v#L1764
https://github.com/bagnalla/algco/blob/main/colist.v#L862
https://github.com/bagnalla/algco/blob/main/colist.v#L884
https://github.com/bagnalla/algco/blob/main/colist.v#L894
https://github.com/bagnalla/algco/blob/main/colist.v#L911

113

coDefnition 76 (∀P
ˆ). For type A and predicate P : A → P, defne

co co∀P
ˆ : L∗

A → P , (fold > (λa : A. λQ : P. P a ∧ Q)) ˆ , with derived introduction and

elimination rules:

co co co∀ ˆ -intro ∀ ˆ -elim-1 ∀ ˆ -elim-2P P P

co co coP a ∀P
ˆ l ∀P

ˆ (cocons a l) ∀P
ˆ (cocons a l)

co co∀P
ˆ (cocons a l) P a ∀P

ˆ l

Defnitions 75 and 76 are used to prove the correctness properties of the sieve of

Eratosthenes in Theorems 16 and 17.

Order Relation as Continuous Extension Although a primitive order relation on

streams must have already been defned (Defnition 65) to gain access to the machinery of

the AlgCo framework in the frst place, we can re-defne it as a continuous extension and

prove it equivalent to the original.

cô côDefnition 77 (v
L). For type A, defne v

LA
: L∗

A → L∗
A → P where vLA : LA → L∗

A ,

fold (λ . >) (λa. λ f . λl. match l with

| ⊥L∗ ⇒ ⊥
A

| cocons b l0 ⇒ a = b ∧ f l0

end)

Remark 11 (vco
L
ˆ coincides with vL∗). Let A be a type. Then,

∀ l1 l2 : L∗
A, l1 v

cô l2 ⇐⇒ l1 vL∗ l2.LA A

Defnition 77 is often more convenient in practice than the primitive order relation

(Defnition 65) because it can be fused (via Theorem 14) with other continuous

extensions. Reasoning with the primitive order typically requires proof by coinduction via

the primitive ‘cofx’ tactic which suffers from the problems described in Section 6.1 (e.g.,

https://github.com/bagnalla/algco/blob/main/colist.v#L868
https://github.com/bagnalla/algco/blob/main/colist.v#L928
https://github.com/bagnalla/algco/blob/main/colist.v#L942
https://github.com/bagnalla/algco/blob/main/colist.v#L951
https://github.com/bagnalla/algco/blob/main/colist.v#L1048
https://github.com/bagnalla/algco/blob/main/colist.v#L1031
https://github.com/bagnalla/algco/blob/main/colist.v#L1088

114

rigid coinduction hypotheses with overly constraining syntactic rules for successful

application). Defnition 77, on the other hand, can be reasoned about inductively as with

any other continuous extension.

The following defnition of the cocontinuous property orderedL∗ states that a stream

is well-ordered with respect to a given relation R. We then specialize orderedL∗ to

particular choices of R to implement sorted and nodup predicates.

Defnition 78 (orderedL∗). For type A and relation R : A → A → P, defne

coorderedL∗ R : L∗
A → P , (orderedLA R) ˆ , where orderedLA R : LA → P is given

A

inductively by the inference rules:

ordered-cons
ordered-nil

∀(R a) l orderedLA l

orderedLA R nil orderedLA (cocons a l)

Defnition 79 (sortedL∗). For ordered type A, Defne

sortedL∗ : L∗
A → P , orderedL∗ (≤A).

A A

Defnition 80 (nodupL∗). For ordered type A, Defne

nodupL∗ : L∗
A → P , orderedL∗ (λx. λy. x , y).

A A

Note that the cofold construction as presented in this dissertation (Defnition 103) is

not sufficient for implementing orderedL∗ . This is not a fundamental limitation; cofolds
A

can be generalized to an analogue of “paramorphisms” [MFP91] which suffice to defne

properties like orderedL∗ . We favor the simpler formulation of cofold given in
A

Defnition 103 for clarity of presentation.

Coflter Filtering a coinductive stream by a given predicate is a notoriously awkward

exercise, typically requiring the stream type to be extended with a special constructor for

so-called “silent-steps” (as in, e.g., [XZH+20], inducing signifcant defnitional clutter and

https://github.com/bagnalla/algco/blob/main/colist.v#L1496
https://github.com/bagnalla/algco/blob/main/colist.v#L1463
https://github.com/bagnalla/algco/blob/main/colist.v#L1464
https://github.com/bagnalla/algco/blob/main/colist.v#L1496
https://github.com/bagnalla/algco/blob/main/colist.v#L1521
https://github.com/bagnalla/algco/blob/main/colist.v#L738

115

performance overhead), or the use of complicated mixed well-founded

induction-coinduction schemes as in [Ber05]. We easily defne flter as a cofold:

Defnition 81 (flterL∗). For type A and f : A → B, defne

f)coflterL∗ f : L∗
A → L∗

A , (flterLA , where:
A

flterLA f : LA → L∗
A , fold ⊥ (λa. λl. if f a then cocons a l else l)

with computation rules:

flterL∗ f ⊥L∗ = ⊥L∗ A A A

flterL∗ f (cocons a l) = if f a then cocons a (flterL∗ f l) else flterL∗ f l.
A A A

6.7.2 Proving With Fusion

Here we demonstrate a common technique for proving equations between continuous

functions over algebraic CPOs by proving commutativity of flterL∗ . First we use
A

Theorem 14 to fuse both sides of the equation, and then we apply Lemma 6 to reduce the

proof to induction over basis elements.

Lemma 13 (flterL∗ is commutative). Let A be a type and f , g : A → B. Then,

∀ l : L∗
A, flterL∗ f (flterL∗ g l) = flterL∗ g (flterL∗ f l).

A A A A

Proof. Unfolding the defnition of flterL∗ , we wish to show:
A

g)co f)coflterL∗ f ◦ (flterLA = flterL∗ g ◦ (flterLA .
A A

We frst fuse both sides of the equation by Theorem 14:

g)co f)co(flterL∗ f ◦ flterLA = (flterL∗ g ◦ flterLAA A

which then follows by Corollary 6 from:

∀ l : LA, flterL∗ f (flterLA g l) = flterL∗ g (flterLA f l)
A A

which follows by straightforward induction on l and application of the flterL∗ A

computation rule (Defnition 81). �

https://github.com/bagnalla/algco/blob/main/colist.v#L1533
https://github.com/bagnalla/algco/blob/main/colist.v#L1529
https://github.com/bagnalla/algco/blob/main/colist.v#L1541
https://github.com/bagnalla/algco/blob/main/colist.v#L1562

116

6.7.3 Proving (Co-)Continuous Properties

A surprising but elegant feature of the AlgCo framework is that by treating predicates

(i.e., propositional functions) over algebraic CPOs as a special case of continuous

functions, we can easily compose them with continuous extensions and greatly simplify

their proofs via fusion. To illustrate, let us prove that flterL∗ P preserves orderedL∗ R for

any P and R:

Lemma 14 (flterL∗ preserves orderedL∗). Let A be a type, R : A → A → P, P : A → P,

and s : L∗
A such that orderedL∗ A

R s. Then,

orderedL∗ R (flterL∗ P s).
A A

Proof. Unfolding the defnition of flterL∗ , the goal becomes:
A

P)coorderedL∗ R ((flterLA s).
A

By fusion (Theorem 15), this is equivalent to:

co(orderedL∗ R ◦ flterLA P) ˆ s
A

which by cô -intro (Defnition 56) follows from:

∀i : N, orderedL∗ R (flterLA P (idl s i)).
A

Fix i. By the fact that ∀l : LA, orderedLA l ⇒ orderedL∗ (flterLA P l) (by straightforward
A

induction on l), it suffices to show:

orderedLA R (idl s i)

which follows by cô -elim (Defnition 56) from orderedL∗ R s. �
A

https://github.com/bagnalla/algco/blob/main/algco.v#L1671
https://github.com/bagnalla/algco/blob/main/aCPO.v#L852
https://github.com/bagnalla/algco/blob/main/colist.v#L1660
https://github.com/bagnalla/algco/blob/main/colist.v#L1660
https://github.com/bagnalla/algco/blob/main/aCPO.v#L852

117

6.7.4 Sieve of Eratosthenes

The sieve of Eratosthenes is an ancient algorithm for generating sequences of prime

numbers up to a given limit. An infnitary variant of the sieve (sometimes called “the

unfaithful sieve” [O’N09]) is often used to demonstrate the elegance of lazy functional

programming. However, it is difficult to replicate in a logically sound type theory (such as

Coq’s) due to its use of a flter operation on streams. We defne the sieve as the continuous

extension of a monotone function on lists:

Defnition 82 (sieve). Defne sieve : L∗
Z , sieve aux (nats 2), where:

)cosieve aux : L∗
Z → L∗

Z , (sieve auxLA , where

sieve auxLA , fold ⊥L∗ (λn. λl. cocons n (flterL∗ (λm. m mod n , 0) l))
Z A

with computation rule:

sieve aux (cocons n l) = cocons n (flterL∗ (λm. m mod n , 0) (sieve aux l)).
A

We verify sieve by proving that it is complete (Theorem 16) and sound (Theorem 17)

with respect to the prime numbers, and that the numbers produced by sieve appear in

ascending order with no duplicates (Theorem 18). We work with the following defnition

of primality:

Defnition 83 (is prime). Defne is prime : Z → P by:

is prime , 1 < n ∧ ∀ m, 1 < m → n , m → n mod m , 0.

Theorem 16 (sieve is complete with respect to the prime numbers). Let n : Z such that

is prime n. Then, ∃co sieve. I.e., every prime number n appears in the stream generated eq n

by sieve.

https://github.com/bagnalla/algco/blob/main/sieve.v#L49
https://github.com/bagnalla/algco/blob/main/sieve.v#L49
https://github.com/bagnalla/algco/blob/main/sieve.v#L41
https://github.com/bagnalla/algco/blob/main/sieve.v#L441
https://github.com/bagnalla/algco/blob/main/sieve.v#L141

118

Theorem 16 states a continuous property (Defnition 55) of the sieve stream, and so is

proved via the introduction rule co-intro for continuous properties by showing that it holds

for every n for some fnite approximation of the sieve.

coTheorem 17 (sieve is sound with respect to the prime numbers). ∀ ˆ sieve. I.e., every is prime

number appearing in the stream generated by sieve is prime.

Theorem 17 states a cocontinuous property (Defnition 56) of the sieve stream, and so

is proved via the introduction rule ĉo-intro for cocontinuous properties by showing that it

holds for all fnite approximations of the sieve.

Theorem 18 (sieve is sorted and contains no duplicates). sortedL∗ sieve and
Z

nodupL∗ sieve.
Z

Theorem 18 is proved by showing that the stream nats 2 is strictly increasing and that

the continuous extension sieve aux (Defnition 82) is strictly order preserving.

6.7.5 Extracting the Sieve

Although continuous extensions are not computable in general due to their

non-constructive defnition (via the sup operator in Section 3.2), we implement an

extraction primitive for cofolds over streams (shown in Figure 6.2) for lazy execution in

Haskell. The correctness of the cofold extraction primitive is justifed by the cofold

computation rule in Lemma 12 and can be checked explicitly on streams intended for

execution (see, e.g., the sieve computation rule in Defnition 82).

Computability of Continuous Extensions The extraction primitive shown in

Figure 6.2 provides a computational interpretation of cofolds that is only partially correct

because programs extracted from continuous extensions are not guaranteed to terminate

for every input (cf. the extracted fxpoint operators of [Cha10] and [BK08]). The reason is

that continuous predicates are only semi-decidable (see Section 6.5), and continuity in

https://github.com/bagnalla/algco/blob/main/aCPO.v#L839
https://github.com/bagnalla/algco/blob/main/sieve.v#L186
https://github.com/bagnalla/algco/blob/main/aCPO.v#L852
https://github.com/bagnalla/algco/blob/main/sieve.v#L410
https://github.com/bagnalla/zar/blob/main/sieve.v#L418

119

cofold =

\ o p f l ->

case l of

Conil -> bot o p

Cocons a l’ -> f a (cofold o p f l’)

Figure 6.2: Haskell extraction primitive for cofold. Parameters o and p are OType and

PType instance dictionary objects for the order relation of the codomain.

general corresponds only to partial computability. For example, the continuous

x. x)co : L∗Boolean-valued predicate bad , (λ B → B diverges for every stream.

We may, however, defne a notion of productivity of streams generated by continuous

extensions (the proof of which for our sieve follows from Euclid’s theorem on the

infnitude of primes [H+56]):

Defnition 84 (productive). For any type A, a stream s : L∗
A is said to be (infnitely)

productive when lengthL∗ s = ωN.
A

We prove that sieve is productive:

Theorem 19 (sieve is productive). lengthL∗ sieve = ωN.
Z

But this notion of productivity is not sufficient in general to absolutely guarantee the

absence of divergence. To see why, consider the stream defned coinductively by

bad stream , cocons (bad (nats 0)) bad stream. Each element of bad stream is

provably equal to false, and bad stream is productive, but any attempt to extract and

compute with its elements will immediately enter an infnite loop.

6.8 Coinductive Tries

Formal languages, typically defned as sets of strings over an alphabet Σ, can be

given an elegant representation by infnite prefx trees (cotries) branching over Σ. The

https://github.com/bagnalla/algco/blob/main/order.v#L28
https://github.com/bagnalla/algco/blob/main/order.v#L62
https://github.com/bagnalla/algco/blob/main/colist.v#L1824
https://github.com/bagnalla/algco/blob/main/inf_primes.v#L601
https://github.com/bagnalla/algco/blob/main/colist.v#L1272
https://github.com/bagnalla/algco/blob/main/sieve.v#L289
https://github.com/bagnalla/algco/blob/main/colist.v#L1826
https://github.com/bagnalla/algco/blob/main/colist.v#L1842
https://github.com/bagnalla/algco/blob/main/colist.v#L1828

120

cotrie representation of a formal language encodes an automaton for recognizing strings in

the language by marking each node as either accepting or rejecting the empty string � and

directly encoding the Brzozowski derivative at the node with respect to each symbol of the

alphabet via a coinductive continuation [Tra15]. In this section, we defne the type of

cotries as an algebraic CPO, develop regular operations over them, and prove that the

operations satisfy the axioms of Kleene algebra, resulting in extraction of a verifed

regular expression library to Haskell.

Formal languages as an algebraic CPO The type of cotries is defned with respect to a

fnite alphabet type (indexing the children of each node) and a pointed ordered type for

node labels. For ease of presentation, we specialize to a fxed fnite alphabet Σ and label

type B.

a b

a ab b

a

a a

a

a a

a

a a

a

a a

bb

bb b b b

b

b

b

b b

...

Figure 6.3: Coinductive trie encoding of regular language ‘� + a ∗b + b∗ a’ over alphabet {a,

b}. Green nodes indicate accept states of the encoded automaton.

Defnition 85 (langΣ). Defne the type langΣ of formal languages over fnite alphabet Σ

coinductively by the formation rule:
lang-node

b : B ∀ a : Σ, k a : langΣ

lnode b k : langΣ

https://github.com/bagnalla/algco/blob/main/cotrie.v#L174
https://github.com/bagnalla/algco/blob/main/cotrie.v#L175

121

Defnition 86 (langΣ order). Defne vlangΣ : langΣ → langΣ → P coinductively by the

inference rule:

vlangΣ -node

b1 vB b2 ∀ a : Σ, f a vlangΣ g a

lnode b1 f vlangΣ lnode b2 g

Unlike the other coinductive types in this dissertation, there is no constructor for ⊥,

or any fnite constructor at all (provided that the alphabet is nonempty). Every cotrie is

thus infnite and congruent in structure to every other cotrie, differing only by the values

of node labels. The empty language, encoded by a cotree in which every label is false,

naturally serves as the bottom element:

Defnition 87 (∅ language). Defne the empty language ∅ coinductively by:

∅ , lnode false (λ. ∅).

Although all cotries are infnite, we can take as a compact basis the subset of cotries

that are meaningfully defned only up to a fnite depth (being equal to ∅ thereafter). Such

cotries are fnitely approximable and thus compact, and can be represented by an inductive

type with a ⊥ constructor standing in for ∅:

Defnition 88 (tlangΣ). Defne the type tlangΣ of fnite approximations of trie languages

over alphabet Σ inductively by the formation rules:

trie-node
tlang-bot

b : B ∀ a : Σ, k a : tlangΣ

⊥tlangΣ : tlangΣ tlnode k : tlangΣ

However, if we were to defne the order relation on tlangΣ in the usual way (e.g.,

Defnition 65), the inclusion map into langΣ would not be injective (up to order

equivalence), as multiple elements of tlangΣ (all approximations of ∅) would be mapped to

https://github.com/bagnalla/algco/blob/main/cotrie.v#L197
https://github.com/bagnalla/algco/blob/main/cotrie.v#L198
https://github.com/bagnalla/algco/blob/main/cotrie.v#L222
https://github.com/bagnalla/algco/blob/main/cotrie.v#L38
https://github.com/bagnalla/algco/blob/main/cotrie.v#L39
https://github.com/bagnalla/algco/blob/main/cotrie.v#L40

122

∅. We solve this by defning the order relation in such a way that all approximations of the

bottom cotrie are collapsed into a single equivalence class.

Defnition 89 (tlangΣ order). Defne vtlangΣ : tlangΣ → tlangΣ → P inductively by the

inference rules:

vtlangΣ -bot

is bot t1 t2 : tlangΣ

vtlangΣ -node

b1 v b2 ∀ a : Σ, f a vtlangΣ g a

t1 vtlangΣ t2 tlnode b1 f vtlangΣ tlnode b2 g

where is bot : tlangΣ → P is defned inductively by:

is bot-node
is bot-bot

∀ a : Σ, is bot (k a)

is bot ⊥tlangΣ is bot (tlnode false k)

We prove that tlangΣ is compact with respect to the above order relation.

Remark 12 (tlangΣ is compact).

The inclusion map incl : tlangΣ → langΣ injects tlangΣ into langΣ, and

idl : langΣ → N → tlangΣ generates convergent chains of fnite approximations of

language cotries.

Defnition 90 (incltlangΣ,langΣ). For type A and l : tlangΣ, defne incltlangΣ,langΣ l : langΣ by

induction on l:

incltlangΣ,langΣ : tlangΣ → langΣ

⊥tlangΣ , ∅

tlnode b k , lnode b (incltlangΣ,langΣ ◦ k)

https://github.com/bagnalla/algco/blob/main/cotrie.v#L61
https://github.com/bagnalla/algco/blob/main/cotrie.v#L62
https://github.com/bagnalla/algco/blob/main/cotrie.v#L63
https://github.com/bagnalla/algco/blob/main/cotrie.v#L42
https://github.com/bagnalla/algco/blob/main/cotrie.v#L43
https://github.com/bagnalla/algco/blob/main/cotrie.v#L44
https://github.com/bagnalla/algco/blob/main/cotrie.v#L552
https://github.com/bagnalla/algco/blob/main/cotrie.v#L648
https://github.com/bagnalla/algco/blob/main/cotrie.v#L674
https://github.com/bagnalla/algco/blob/main/colist.v#L648

123

Defnition 91 (idltlangΣ,langΣ). For type A, l : langΣ, and n : N, defne idltlangΣ,langΣ l n : tlangΣ

by induction on n:

idltlangΣ,langΣ : L∗
A → N → L∗

A

O , ⊥tlangΣ

(lnode b k) (S n) , tlnode b (λx. idltlangΣ,langΣ (k x) n)

Remark 13 (tlangΣ is dense in tlangΣ). For all l : langΣ,

idl l is an ω-chain, and

sup (incl ◦ idl l) = l.

We also have ∅ v l for all l : langΣ, and thus:

Remark 14 (langΣ is a pointed algebraic CPO with basis tlangΣ).

As with conats (Section 6.6) and streams (Section 6.7), the order relation on cotries

(Defnition 86) is carefully chosen to allow the safe addition of an extensionality axiom

entailing propositional equality from order equivalence (see Section 6.6.1 for discussion

of such extensionality axioms for coinductive types):

Axiom 6 (langΣ extensionality). ∀ l1 l2 : langΣ, l1 ' langΣ l2 ⇒ l1 = l2.

6.8.1 Regular Languages

The cotrie encoding of formal languages naturally leads to a straightforward

algorithm for checking membership of a string s : LΣ by induction on s.

Defnition 92 (langΣ membership). For t : langΣ and l : LΣ, defne t ∈ l : B by induction

on l:

∈ : langΣ → LΣ → B

(lnode b) nil , b

(lnode k) (cons a l) , in lang (k a) l

https://github.com/bagnalla/algco/blob/main/colist.v#L674
https://github.com/bagnalla/algco/blob/main/colist.v#L911
https://github.com/bagnalla/algco/blob/main/cotrie.v#L911
https://github.com/bagnalla/algco/blob/main/cotrie.v#L264
https://github.com/bagnalla/algco/blob/main/cotrie.v#L1196

124

A remarkable property of language cotries is that the semantic notion of language

equivalence coincides precisely with structural equality (cf. the extensional tries

of [AL21]). This greatly simplifes proofs of equalities between cotries by reducing them

to straightforward induction over lists.

Lemma 15 (Semantic equivalence coincides with structural equality). Let a : langΣ and

b : langΣ. Σ. Then,

(∀l : LΣ, a ∈ l = b ∈ l) ⇐⇒ a = b.

We let ‘o a’ denote the Boolean indicating whether a accepts the empty string or not

and we let ‘δa x’ denote the Brzozowski derivative of language a with respect to character

x (i.e., o (lnode b) , b for all b and δ(lnode k) x , k x for all k and x).

Defnition 93 (Regular language constructions). Defne the language � containing only

the empty string by:

� , lnode true (λ . ∅),

defne the union and intersection of a : langΣ and b : langΣ by primitive coinduction:

a + b , lnode (o a ∨ o b) (λx. δa x + δb x)

a & b , lnode (o a ∧ o b) (λx. δa x & δb x),

and defne the complement of a : langΣ by primitive coinduction:

¬a , lnode (¬(o a)) (λx. ¬(δa x)).

The structural order on cotrie languages also coincides with the standard semantic

order on Kleene algebras: a v b ⇐⇒ a + b = a.

https://github.com/bagnalla/algco/blob/main/cotrie.v#L1215
https://github.com/bagnalla/algco/blob/main/cotrie.v#L1251
https://github.com/bagnalla/algco/blob/main/cotrie.v#L1295
https://github.com/bagnalla/algco/blob/main/cotrie.v#L1307
https://github.com/bagnalla/algco/blob/main/cotrie.v#L1323
https://github.com/bagnalla/algco/blob/main/cotrie.v#L2673

125

The concatenation and Kleene star operators are more difficult to implement than

those given above because they are not primitive corecursive. We can attempt to defne the

concatenation of a : langΣ and b : langΣ as follows:

a · b , lnode (o a ∧ o b) (λx. δa x · b + (if o a then δb x else ∅)),

or, concretely as a CoFixpoint in Coq:

CoFixpoint concat {n} (a b : lang n) : lang n ,
match a, b with
| lnode b1 k1, lnode b2 k2 ⇒

lnode (b1 && b2)
(λ x ⇒ union (concat (k1 x) b) (if b1 then k2 x else empty))

end.

But this defnition is rejected by Coq’s guardedness checker because the corecursive call

to concat appears under a call to union, i.e., concat is primitive recursive “up-to” union.

One strategy for solving this issue (taken, e.g., by [BBL+17] in the Isabelle/HOL proof

assistant) is to register union as a so-called “friendly function” that respects productivity

of its arguments. Lacking support for friendly functions in Coq, we take a different

approach by defning concatenation as the continuous extension of a monotone fold over

fnite tries:

Defnition 94 (concat). For languages a : langΣ and b : langΣ, defne the concatenation

a · b : langΣ , tconcatco a b, where:

tconcat , foldtlangΣ (λ . ∅)

(λb. λk. λl. lnode (b ∧ o l)(λx. k x l + (if b then δl x else ∅))).

The Kleene closure operator is afflicted by essentially the same problem. We can

attempt to defne the closure of a : lang as follows:

a ∗ , lnode true (λx. δa x · a ∗),

or, concretely as a CoFixpoint in Coq:

https://github.com/bagnalla/algco/blob/main/cotrie.v#L1438
https://github.com/bagnalla/algco/blob/main/cotrie.v#L1341

126

CoFixpoint star {n} (a : lang n) : lang n ,
match a with
| lnode k ⇒ lnode true (λ x ⇒ concat (k x) (star a))
end.

But again the defnition is rejected because the corecursive call to star appears under a call

to concat. We implement the Kleene star is a lazy coiteration (see Section 6.6.2):

Defnition 95 (Kleene star). For language a : langΣ, defne the Kleene closure a ∗ : langΣ

by:

a ∗ , coiter (λb. lnode true (δa x · b)) ωN.

All the operations defned in this section can be extracted to Haskell and used to

decide membership of strings over a fnite alphabet in regular languages (with an abstract

syntax for regular expressions and its interpretation into langΣ – see fle RE test.v for

example use). We prove fnally that they satisfy the Kleene algebra axioms:

Theorem 20 (Kleene Algebra). The type langΣ with zero element ∅, one element �, and +,

·, and ∗ operations forms a Kleene algebra.

https://github.com/bagnalla/algco/blob/main/cotrie.v#L1547
https://github.com/bagnalla/algco/blob/main/cotrie.v#L3011
https://github.com/bagnalla/algco/blob/main/cotrie.v#L3011
https://github.com/bagnalla/algco/blob/main/cotrie.v#L3022
https://github.com/bagnalla/algco/blob/main/RE_test.v
https://github.com/bagnalla/algco/blob/main/cotrie.v#L2987

127

7 Cotrees
As buds give rise by growth to fresh

buds ...
Charles Darwin

Proofs about interaction tree samplers in the Zar system are largely carried out

indirectly via the tools of AlgCo through a auxiliary type of coinductive binary trees

called cotrees. The benefts of this approach are as follows:

1. Avoiding unneeded generality. The type of interaction trees is more general than

necessary for our purposes, employing higher-order parameterization by an event

functor that incurs unnecessary technical friction in proofs.

2. Separation of constructive and nonconstructive terms. Cotrees defned by

continuous extensions are not necessarily computable. By enforcing a clear

separation between the realms of ITrees and cotrees, we ensure that ITrees

generated by Zar can always be extracted for execution.

Figure 7.1: Zar compiler pipeline with alternate cotree backend and equidistribution result.

In this chapter, we defne the coinductive type of infnitary trees with fnite branching

factor (cotrees) as an algebraic CPO. We then use cotrees to encode samplers for discrete

128

distributions in the random bit model [VN51, SFRM20b] and show how AlgCo enables

weakest pre-expectation [Koz85, MMS96, Kam19] style reasoning about them

(Section 7.3), culminating in Theorem 23 showing that sequences of samples are

equidistributed [BG22] with respect to the weakest pre-expectation semantics of the

cotrees that generated them. Figure 7.1 illustrates the Zar architecture extended with (5)

compilation from CF trees to cotrees (Section 7.5), (6) relating equivalent constructions of

ITrees and cotrees (Section 7.6), and (7) the equidistribution result on cotrees

(Section 7.4) which is lifted through (5) to obtain the equivalent result on ITrees.

7.1 Coinductive Trees as an Algebraic CPO

For clarity of presentation we specialize cotrees to the case of coinductive binary

trees with index type B. In general, the index type must only be fnite to ensure

compactness of basis elements.

Defnition 96 (Cotrees). Defne the type TA
∗ of cotrees with element type A coinductively

by the formation rules:

cotree-bot
cotree-leaf cotree-tau cotree-node

a : A t : T ∗ A ∀ b : B, k b : T ∗ A

⊥T ∗ : T ∗ coleaf a : T ∗ cotau t : T ∗ conode k : T ∗
A A A AA

The defnition of cotrees is analogous to that of ITree samplers (Defnition 44) but

with a special bottom element ⊥T ∗ standing for the “undefned” cotree. ‘coleaf a’ encodes
A

a sampler that produces sample a : A, and ‘conode k’ encodes a binary choice between

subtrees ‘k true’ and ‘k false’. As alluded to in Section 6.1, the cotau constructor is not

strictly necessary for any of the defnitions in this chapter, but we include it to enable a

straightforward injection of ITrees into the type of cotrees for the purpose of defning

weakest pre-expectation semantics on ITrees (see Section 7.6 for details). Figure 7.2

https://github.com/bagnalla/zar/blob/main/cotree.v#L49
https://github.com/bagnalla/zar/blob/main/cotree.v#L50
https://github.com/bagnalla/zar/blob/main/cotree.v#L51
https://github.com/bagnalla/zar/blob/main/cotree.v#L52
https://github.com/bagnalla/zar/blob/main/cotree.v#L53

129

true
false

true
... false

Figure 7.3: Illustration of cotree encoding of Bernoulli(2
3) distribution from Figure 7.2.

shows a cotree analogue of the Bernoulli(2
3) ITree from Figure 4.5, illustrated in

Figure 7.3.

ct 2 , conode (λb0. if b0 then coleaf true
3

else conode (λb1. if b1 then coleaf false

else cotau ct 2))
3

Figure 7.2: Cotree term corresponding to the ITree in Figure 4.5.

Cotrees are ordered by a straightforward structural prefx relation:

Defnition 97 (Cotree order). Defne vT ∗ : TA
∗ → TA

∗ → P coinductively by the inference
A

rules:

vT ∗ -bot A
vT ∗ -leaf A

vT ∗ -tau A

l : T ∗ A a : A t1 vT ∗ A
t2

⊥T ∗ A
vT ∗ A

l coleaf a vT ∗ A
coleaf a cotau t1 vT ∗ A

cotau t2

vT ∗ -node A

∀ b : B, f b vT ∗ A
g b

conode f vT ∗ A
conode g

https://github.com/bagnalla/zar/blob/main/cotree.v#L188
https://github.com/bagnalla/zar/blob/main/cotree.v#L189
https://github.com/bagnalla/zar/blob/main/cotree.v#L190
https://github.com/bagnalla/zar/blob/main/cotree.v#L191
https://github.com/bagnalla/zar/blob/main/cotree.v#L194

130

A compact basis for cotrees is given by a corresponding ordered type of fnite binary

trees:

Defnition 98 (Finite trees). Defne the type TA of fnite binary trees with element type A

inductively by the formation rules:
tree-leaf tree-tau tree-node

tree-bot
a : A t : TA ∀ b : B, k b : TA

⊥TA : TA leaf a : TA tau t : TA node k : TA

With prefx order:

Defnition 99 (Finite tree order). Defne vTA : TA → TA → P inductively by the inference

rules:
vTA -bot vTA -leaf vTA -tau vTA -node

t : TA a : A t1 vTA t2 ∀ b : B, f b vTA g b

⊥TA vTA t leaf a vTA leaf a tau t1 vTA tau t2 node f vTA node g

Remark 15 (TA is compact). For any type A, the elements of TA are fnite and are thus

compact. Any function with domain TA is therefore automatically continuous (Lemma 4)

and, importantly, can be reasoned about by induction over the domain TA.

To show that TA
∗ is an algebraic CPO, it only remains to show that TA is dense in TA

∗ .

The inclusion map inclTA,T
∗ : TA → T ∗ injects fnite trees into T ∗, and
A A A

idlTA,T
∗ : TA

∗ → N → TA generates convergent chains of fnite approximations of cotrees.
A

Defnition 100 (inclT,T∗). For type A and t : TA, defne inclTA,T
∗ l : TA

∗ by induction on l:
A

inclTA,TA
∗ : TA → TA

∗

⊥TA , ⊥TA
∗

leaf a , coleaf a

tau t , cotau (inclTA,T
∗ t)
A

node k , conode (inclTA,T
∗ ◦ k)
A

https://github.com/bagnalla/zar/blob/main/cotree.v#L77
https://github.com/bagnalla/zar/blob/main/cotree.v#L78
https://github.com/bagnalla/zar/blob/main/cotree.v#L79
https://github.com/bagnalla/zar/blob/main/cotree.v#L79
https://github.com/bagnalla/zar/blob/main/cotree.v#L81
https://github.com/bagnalla/zar/blob/main/cotree.v#L93
https://github.com/bagnalla/zar/blob/main/cotree.v#L94
https://github.com/bagnalla/zar/blob/main/cotree.v#L95
https://github.com/bagnalla/zar/blob/main/cotree.v#L96
https://github.com/bagnalla/zar/blob/main/cotree.v#L99
https://github.com/bagnalla/zar/blob/main/cotree.v#L1187
https://github.com/bagnalla/zar/blob/main/cotree.v#L170
https://github.com/bagnalla/zar/blob/main/cotree.v#L146
https://github.com/bagnalla/zar/blob/main/cotree.v#L436

131

Defnition 101 (idlT,T∗). For type A, l : TA
∗ , and n : N, defne idlTA,T

∗ l n : TA by induction
A

on n:

idlTA,TA
∗ : TA

∗ → N → TA
∗

O , ⊥TA

⊥T ∗ , ⊥TAA

coleaf a (S n) , leaf a

(cotau t) (S n) , tau (idlTA,T
∗ t n)
A

(conode k) (S n) , node (λb. idlTA,T
∗ (k b) n)
A

It follows that the type TA of fnite binary trees is dense in the type TA
∗ of cotrees for

any type A.

Remark 16 (TA is dense in T ∗). Let A be a type. Then, for all a : T ∗
A A ,

idl a is an ω-chain, and

sup (incl ◦ idl a) = a.

We also have ⊥T∗ v l for all l : TA
∗, and thus:

A

Remark 17 (TA
∗ is a pointed algebraic CPO with basis TA).

The order relation on cotrees (Defnition 97) is carefully chosen to allow the

following extensionality axiom entailing propositional equality from order equivalence

(see Section 6.6.1 for discussion of such extensionality axioms for coinductive types):

Axiom 7 (Cotree extensionality). Let A be a type. Then,

∀ l1 l2 : TA
∗ , l1 'TA

∗ l2 ⇒ l1 = l2.

7.2 Cofolds Over Cotrees

Cofolds over cotrees and their computation rules are derived analogously to streams

(Section 6.7.1) with respect to the fold operator:

https://github.com/bagnalla/zar/blob/main/cotree.v#L146
https://github.com/bagnalla/zar/blob/main/cotree.v#L842
https://github.com/bagnalla/zar/blob/main/cotree.v#L842
https://github.com/bagnalla/zar/blob/main/cotree.v#L278
https://github.com/bagnalla/zar/blob/main/cotree.v#L1318
https://github.com/bagnalla/zar/blob/main/cotree.v#L1390

132

Defnition 102 (foldTA). For type A, ordered type B, z : B, f : A → B, g : B → B,

h : (B → B) → B, and t : TA, defne foldTA z f g h t : B by induction on t:

foldTA z f g h : TA → B

⊥TA , z

leaf a , f a

tau t , g (foldTA z f g h t)

node k , h (foldTA z f g h ◦ k)

Defnition 103 (cofoldT∗). For type A, pointed type B, f : A → B, g : B → B, and
A

h : (B → B) → B, defne cofoldT∗ f g h : TA
∗ → B by:

A

cofoldT∗ f g h , (foldTA ⊥B f g h)co ,
A

or when B has a top element >B, defne ˆ f g h : L∗
A → B:cofoldT∗

A

ˆ f g h , (foldTA
co .cofoldT∗ >B f g h) ˆ

A

To illustrate with a concrete example, let us defne the functorial map operator for

cotrees as a cofold:

Defnition 104 (mapT∗). For types A and B, and f : A → B, defne mapT∗ f : TA
∗ → T ∗

A A B

by:

mapTA f , cofoldTA (coleaf ◦ f) cotau conode.

Proofs of continuity for cofolds can be simplifed via the following general lemma:

Lemma 16 ((Co)continuous cofold for cotrees). Let A be a type, B an ordered type, z : B,

f : A → B, g : B → B monotone, and h : (B → B) → B monotone. Then,

(∀ t : TA, z v fold z f g h t) ⇒ fold z f g h is monotone,

(∀ t : TA, fold z f g h t v z) ⇒ fold z f g h is antimonotone, and

cofoldT∗ f is continuous and ˆ f is cocontinuous.cofoldT∗
A A

https://github.com/bagnalla/zar/blob/main/cotree.v#L1304
https://github.com/bagnalla/zar/blob/main/cotree.v#L1318
https://github.com/bagnalla/zar/blob/main/cotree.v#L
https://github.com/bagnalla/zar/blob/main/cotree.v#L1610
https://github.com/bagnalla/algco/blob/main/colist.v#L1333
https://github.com/bagnalla/algco/blob/main/colist.v#L1349
https://github.com/bagnalla/algco/blob/main/aCPO.v#L300
https://github.com/bagnalla/algco/blob/main/aCPO.v#L324

133

Applying Lemma 16 to mapT∗ , we see that mapT∗ is continuous because the cotau

and conode constructors are monotone.

Cofold computation Computation rules for cofolds can be derived from the following

generic lemma:

Lemma 17 (cofoldT∗ computation for cotrees). Let A be a type, B a pointed CPO,
A

f : A → B, g : B → B, and h : (B → B) → B such that g and h are continuous. Then,

cofoldT∗ f g h ⊥T∗ ' ⊥BA A

cofoldT∗ f g h (coleaf a) ' f a
A

cofoldT∗ f g h (cotau t) ' g (cofoldT∗ f g h t)
A A

cofoldT∗ f g h (conode k) ' h (cofoldT∗ f g h ◦ k).
A A

By applying Lemma 17 to our running example, we derive the following computation

rules for mapT∗ :

mapT∗ f ⊥T ∗ = ⊥T ∗ A A A

mapT∗ f (coleaf a) = coleaf (f a)
Corollary 2 (mapT∗ computation). A

mapT∗ f (cotau t) = cotau (mapT∗ f t)
A A

mapT∗ f (conode k) = conode (mapT∗ f ◦ k).
A A

Lemma 17 guarantees partial correctness (i.e, correctness for terminating executions)

of the extraction primitive in Figure 7.4 for continuous g and h (see Section 6.7.5 for

related discussion on partial correctness of extracted cofolds).

Essential Cofolds We present a collection of useful cofolds over cotrees and derive their

computation rules from Lemma 17, beginning with the monadic bind operator for cotrees:

Defnition 105 (Cotree monadic bind). For types A and B, t : TA
∗ , and f : A → TB

∗ , defne

t �= f : TB
∗ , (tbind f)co t, where:

tbind f , foldTA ⊥T ∗ k cotau conode
B

https://github.com/bagnalla/zar/blob/main/cotree.v#L1619
https://github.com/bagnalla/zar/blob/main/cotree.v#L229
https://github.com/bagnalla/zar/blob/main/cotree.v#L1471
https://github.com/bagnalla/zar/blob/main/cotree.v#L1849
https://github.com/bagnalla/zar/blob/main/cotree.v#L1557
https://github.com/bagnalla/zar/blob/main/cotree.v#L1554

134

cofold =

\ o p f g h t ->

case t of

Cobot -> bot o p

Coleaf a -> f a

Cotau t’ -> g (cofold o p f g h t’)

Conode k -> g (cofold o p f g h . k)

Figure 7.4: Haskell extraction primitive for cofoldT∗ .

with computation rules:

⊥T∗ �= f = ⊥T ∗ A A

coleaf a �= f = f a

cotau t �= f = cotau (t �= f)

conode k �= f = conode (λx. k x �= f).

Remark 18 (T ∗ is a monad). The type constructor T ∗ is a monad with monadic return

given by the leaf constructor and bind given by �= (Defnition 105). That is,

leaf is the right identity for t : TA
∗:

t �= leaf = t,

and ‘�=’ is associative for t : TA
∗ , f : A → TB

∗ , g : B → TC
∗:

(t �= f) �= g = t �= (λx. f x �= g).

https://github.com/bagnalla/zar/blob/main/colist.v#L1581
https://github.com/bagnalla/zar/blob/main/cotree.v#L2364
https://github.com/bagnalla/zar/blob/main/cotree.v#L2340

135

Existential quantifcation over cotrees is given by the continuous predicate:

Defnition 106 (∃co). For type A and predicate P : A → P, defne ∃co : TA
∗ → P where: P P

∃P , foldTA ⊥ P (λg : B → P. ∃ b. g b)

with derived introduction and elimination rules:

∃co ∃co ∃co ∃co-intro-leaf -intro-tau -intro-node -elim-bot P P P P

∃co ∃co ∃coP a t b : B (k b) ⊥T ∗ P P P A

∃co ∃co ∃co(coleaf a) (cotau t) (conode k) ⊥P P P

∃co ∃co ∃co-elim-leaf -elim-tau -elim-nodeP P P

∃co ∃co ∃co(coleaf a) (cotau t) (conode k)P P P

∃co ∃ b : B. ∃coP a P t P (k b)

The reader may notice that the expression ‘∃b. g b’ above could be replaced with the

arguably simpler expression ‘g false ∨ g true’. This is an artifact of our specialization to

binary cotrees; in general the index type for subtrees can be any fnite type.

Universal quantifcation over cotrees is given by the cocontinuous predicate:

co coDefnition 107 (∀P
ˆ). For type A and predicate P : A → P, defne ∀P

ˆ : TA
∗ → P where:

∀P , foldTA > P (λg : B → P. ∀ b. g b)

with introduction and elimination rules:
co co co co∀ ˆ -intro-leaf ∀ ˆ -intro-tau ∀ ˆ -intro-node ∀ ˆ -elim-leafP P P Pco∀P

ˆ -intro-bot
∀ ˆ ∀ ˆco co coP a t ∀ b : B. ∀ ˆ (k b) (coleaf a)P P P

co co co co∀ ˆ ⊥T∗ ∀ ˆ (coleaf a) ∀ ˆ (cotau t) ∀ ˆ (conode k) P a P P P PA

co co∀P
ˆ -elim-tau ∀P

ˆ -elim-node

co co∀P
ˆ (cotau t) b : B ∀P

ˆ (conode k)

co co∀P
ˆ t ∀P

ˆ (k b)

https://github.com/bagnalla/zar/blob/main/cotree.v#L1940
https://github.com/bagnalla/zar/blob/main/cotree.v#L1934
https://github.com/bagnalla/zar/blob/main/cotree.v#L1968
https://github.com/bagnalla/zar/blob/main/cotree.v#L1978
https://github.com/bagnalla/zar/blob/main/cotree.v#L1989
https://github.com/bagnalla/zar/blob/main/cotree.v#L1960
https://github.com/bagnalla/zar/blob/main/cotree.v#L2001
https://github.com/bagnalla/zar/blob/main/cotree.v#L2011
https://github.com/bagnalla/zar/blob/main/cotree.v#L2022
https://github.com/bagnalla/zar/blob/main/cotree.v#L1943
https://github.com/bagnalla/zar/blob/main/cotree.v#L1937
https://github.com/bagnalla/zar/blob/main/cotree.v#L2066
https://github.com/bagnalla/zar/blob/main/cotree.v#L2066
https://github.com/bagnalla/zar/blob/main/cotree.v#L2076
https://github.com/bagnalla/zar/blob/main/cotree.v#L2086
https://github.com/bagnalla/zar/blob/main/cotree.v#L2098
https://github.com/bagnalla/zar/blob/main/cotree.v#L2108
https://github.com/bagnalla/zar/blob/main/cotree.v#L2118

136

As for Defnition 106, we use a universal quantifer to accommodate the possibility of

index types other than B.

7.3 Weakest Pre-Expectations for Cotrees

To reason formally about cotree samplers, we defne a variant of the weakest

pre-expectation (wp) semantics (originally due to Kozen [Koz85]), adapted from its

application to the probabilistic Guarded Command Language (pGCL) [MM05].

An expectation is a function f : A → R∞
≥0 mapping elements of sample space A to the

nonnegative extended reals. The purpose of wp is to compute expected values of

expectations over cotrees (i.e., integrating over the probability densities encoded by them):

Defnition 108 (wpT∗). For type A and expectation f : A → R∞
≥0, defne

f)cowpT∗ f : TA
∗ → R∞

≥0 , (wpTA , where:
A

g true + g false
wpTA f , foldTA 0 f idR∞ (λg : B → R∞)

≥0 ≥0. 2

with computation rules:

wpT∗ f ⊥T ∗ = 0
A A

wpT∗ f (coleaf a) = f a
A

wpT∗ f (cotau t) = wpT∗ f t
A A

wpT∗ f (k true)+wpT∗ f (k false)
wpTA

∗ f (conode k) = A
2

A .

idR∞ denotes the identity mapping on R∞
≥0. wpT∗ can be used to express the

≥0 A

probability of a given event Q : A → P over the distribution encoded by cotree t : TA
∗ via

the expected value of the indicator function [Q] given by wpT∗ [Q] t. For example, the
A

probability that t 2 produces the value true is given by wp [λx. x = true] t 2 = 3
2 .

3 3

Technically, wpT∗ [Q] t denotes the probability of terminating with a sample satisfying Q,
A

and does not account for executions which produce no sample at all. For more fexibility

in reasoning about nontermination, we also defne a “liberal” variant wlpT∗ :

https://github.com/bagnalla/zar/blob/main/cocwp.v#L145
https://github.com/bagnalla/zar/blob/main/cocwp.v#L138
https://github.com/bagnalla/zar/blob/main/cocwp_facts.v#L237

137

Defnition 109 (wlpT∗). For type A and expectation f : A → R≤

≥
1
0, defne

wlpT∗ f : TA
∗ → R≤

≥
1
0 , (wlpTA f)cô , where:

A

g true + g false
wlpTA f , foldTA 1 f idR≤1 (λg : B → R≤

≥
1
0.)

≥0 2

with computation rules:

wlpT∗ f ⊥T ∗ = 1
A A

wlpT∗ f (coleaf a) = f a
A

wlpT∗ f (cotau t) = wlpT∗ f t
A A

wlpT∗ f (k true)+wlpT∗ f (k false)
wlpTA

∗ f (conode k) = A
2

A .

wlpT∗ [Q] t denotes the probability of producing a sample satisfying Q plus the
A

probability of divergence. Note that wlpT∗ is only defned for expectations bounded above

by 1 and thus is primarily used for calculation of probabilities. Also note that wlpT∗ is

cocontinuous, whereas wpT∗ is continuous.

Conditional Weakest Pre-expectations cpGCL programs are compiled to cotrees of

type T1
∗
+Σ (see Section 7.5), where 1 on the LHS of the sum type is used to encode

observation failure. I.e., a terminating execution of the process encoded by t : T1
∗
+Σ

produces either the value inl () denoting failed observation, or inr σ for some terminal

program state σ : Σ. We can thus recreate the generalized wpb semantics described in

Section 3.3 of t : T1
∗
+Σ as wpT∗ ([b] + f) t, (this connection is made explicit in

1+Σ

Section 7.5), and likewise for wlp. The cwp semantics of cotrees is then defned

analogously to Defnitions 2 and 40:

Defnition 110 (cwpT∗). For type A, t : T1
∗
+A, and f : A → R

≥
∞

0, defne cwpTA
∗ f t : R∞

≥0 by:

wpT∗ (0 + f) t
cwpT∗ f t , 1+A .

A wlpT∗ (0 + 1) t
1+A

https://github.com/bagnalla/zar/blob/main/cocwp.v#L163
https://github.com/bagnalla/zar/blob/main/cocwp.v#L159
https://github.com/bagnalla/zar/blob/main/cocwp_facts.v#L325
https://github.com/bagnalla/zar/blob/main/cocwp.v#L177

138

Healthiness Conditions The following lemma shows a fundamental connection

between wpT∗ and monadic bind that is especially relevant when reasoning about cotree

samplers compiled from probabilistic programs with sequenced commands:

Lemma 18 (wpT∗ bind). Let A and B be types, f : B → R∞
≥0, t : TA

∗ , and k : A → TB
∗ .

Then,

wpT∗ f (t �= k) = wpT∗ (wpT∗ f ◦ k) t.
B A B

An analogous lemma holds for wlpT∗ . We further validate wpT∗ and wlpT∗ by proving

several healthiness conditions, including Markov’s inequality [Kam19]. All proofs are

carried out with the machinery of AlgCo from Chapter 6.

Lemma 19 (wpT∗ is strict and wlpT∗ is co-strict). For any type A,

wpT∗ 0 = 0, wlpT∗ 1 = 1.
A A

Lemma 20 (wpT∗ is linear). Let A be a type, c : R
≥
∞

0, f , g : A → R∞
≥0, and t : TA

∗ . Then,

wpT∗ (c · f + g) t = c · wpT∗ f t + wpT∗ f t.
A A A

Lemma 21 (wpT∗ and wlpT∗ are monotone). Let A be a type, f , g : A → R∞
≥0, and t : TA

∗ .

Then,

(∀ a : A, f a ≤ g a) ⇒ wpT∗ f t ≤ wpT∗ f t,
A A

and if f and g are bounded above by 1,

(∀ a : A, f a ≤ g a) ⇒ wlpT∗ f t ≤ wlpT∗ f t.
A A

Lemma 22 (Invariant sum). Let A be a type, f : A → R≤

≥
1
0, and t : TA

∗ . Then,

wpT∗ f t + wlpT∗ (1 − f) t = 1.
A A

Theorem 21 (Markov’s inequality). Let A be a type, f : A → R∞
≥0, t : TA

∗, and a : R≥0.

Then,
wpT∗ f t

wpT∗ [f ≥ a] t ≤ A .
A a

https://github.com/bagnalla/zar/blob/main/cocwp_facts.v#L268
https://github.com/bagnalla/zar/blob/main/cocwp_facts.v#L367
https://github.com/bagnalla/zar/blob/main/cocwp_facts.v#L581
https://github.com/bagnalla/zar/blob/main/cocwp_facts.v#L590
https://github.com/bagnalla/zar/blob/main/cocwp_facts.v#L706
https://github.com/bagnalla/zar/blob/main/cocwp_facts.v#L1183
https://github.com/bagnalla/zar/blob/main/cocwp_facts.v#L1074
https://github.com/bagnalla/zar/blob/main/cocwp_facts.v#L1203

139

7.4 Coinductive Measure

As described in Section 5.2, we can view a cotree sampler as an encoding of a partial

function mapping infnite bitstreams (elements of the Cantor space 2ω) to elements of the

sample space. Given t : TA
∗ , we let ft : 2ω * A denote the function induced by t that either

diverges on a given bitstream or produces a sample x by starting from the root of t and

using the bits of the stream to guide traversal (e.g., taking the left subtree on 1 and the

right on 0) until reaching a leaf containing x.

The preimage ft
−1(Q) of an event Q : A → P under sampler function ft is the subset

of bitstreams in 2ω sent by ft to samples in Q. We represent subsets of 2ω as cotrees of

type T
L
∗
B

encoding countable unions of basic sets in 2ω . Basic sets are encoded by fnite

bitstrings, where bitstring b : LB denotes the set {s : 2ω | b v s} of all bitstreams sharing

prefx b. We further require that all bitstrings appearing in a cotree set be pairwise

incomparable, i.e., disjoint. We let Σ0
1 denote the class of countable unions of basic sets,

and show how to compute cotree representations of Σ0
1 preimages of events via a

continuous extension in Defnition 113.

Under this view, we re-cast the task of inferring the probability of event Q : A → P

with respect to sampler t : TA
∗ to that of computing the measure of ft

−1(Q) ⊆ 2ω, where the

measure of a bitstring bs is equal to
1

, and the measure of a Σ0
1 cotree

2(length bs)

(Defnition 117) is the sum of the measures of its constituent bitstrings (so long as they are

pairwise disjoint). We prove that the probability of any event Q according to the wpT∗
A

semantics of sampler t coincides with the measure of its preimage under ft (Lemma 25),

and then use this to prove that sequences of samples generated from t are equidistributed

with respect to its wpT∗ semantics (Theorem 23).
A

Computing Preimages Preimages of cotrees are defned by the composition of two

continuous extensions langT∗ and flterT∗ . We begin with langT∗ , which indiscriminately
A A A

140

(not with respect to any predicate) computes the subset of 2ω sent by sampler t to any leaf

at all (i.e., the preimage ft
−1(A) of the entire sample space A, or, the language of t).

: T ∗ coDefnition 111 (langT∗). For type A, defne langT∗ A → T ∗ , langTA , where:
A A LB

langTA , foldTA ⊥T ∗ (λ . coleaf nil) idT∗
LB LB

(λg. conode (λb. mapT∗ (cons b) (g b)))
A

with computation rules:

langT∗ f ⊥T ∗ = ⊥T ∗ A A LB

langT∗ f (coleaf a) = coleaf nil
A

langT∗ f (cotau t) = langT∗ f t
A A

langT∗ f (conode k) = conode (λb. mapT∗ (cons b) (langT∗ (k b))).
A A A

We then defne a continuous extension for fltering by a Boolean-valued predicate:

Defnition 112 (flterT∗). For type A and predicate P : A → B, defne
A

P)coflterT∗ P : TA
∗ → TA

∗ , (flterTA , where:
A

flterTA P ,

foldTA ⊥T ∗ (λa. if P a then coleaf a else ⊥T ∗) cotau conode
A A

with computation rules:

flterT ∗ P ⊥T ∗ A A
= ⊥T ∗ A

flterT ∗ P (coleaf a)
A

= if P a then coleaf a else ⊥T ∗ A

flterT ∗ P (cotau t)
A

= cotau (flterT ∗ A
P t)

flterT ∗ P (conode k)
A

= conode (flterT ∗ A
P ◦ k).

https://github.com/bagnalla/zar/blob/main/mu.v#L77
https://github.com/bagnalla/zar/blob/main/mu.v#L74
https://github.com/bagnalla/zar/blob/main/mu.v#L93
https://github.com/bagnalla/zar/blob/main/cotree.v#L1626
https://github.com/bagnalla/zar/blob/main/cotree.v#L1623
https://github.com/bagnalla/zar/blob/main/cotree.v#L1893

141

Notice that, in contrast to flterL∗ (Defnition 81), elements removed by flterT∗ are
A A

simply replaced by ⊥T ∗ rather than restructuring the tree to eliminate them entirely. This
A

is no problem because we never compute with preimage sets – they are only part of the

correctness specifcation for the cotree equidistribution theorem (Theorem 23).

The preimage of a predicate Q with respect to sampler t is then obtained as the

language of t after being fltered by Q.

Defnition 113 (preimageT∗). For type A and predicate Q : A → B, defne
A

preimageL∗ : TA
∗ → T ∗ as:

A LB

preimageL∗ , langT∗ ◦ flterT∗ Q.
A A A

We defne pairwise disjointness of cotree-encoded sets and prove that cotree

preimages are always pairwise disjoint:

Defnition 114 (Incomparable). For ordered type A, x, y : A are incomparable (written

x ./ y) when ¬(x v y ∨ y v x).

Defnition 115 (disjointT∗). For ordered type A, defne disjointT∗ : TA
∗ → P , disjointTA

cô ,
A A

where disjointTA : TA → P is given inductively by the inference rules:

disjoint-leaf disjoint-tau
disjoint-bot

a : A disjointTA t

disjointTA ⊥TA disjointTA (leaf a) disjointTA (tau t)

disjoint-node

∀ b : B, disjoint (k b) ∀λx. ∀x./ (k false) (k true) ∀λx. ∀x./ (k true) (k false)

disjointTA (node k)

Theorem 22 (Cotree preimages are pairwise disjoint). Let A be a type, P : A → B, and

t : TA
∗ . Then,

disjointT∗ (preimageT∗ P t).
A A

https://github.com/bagnalla/zar/blob/main/mu.v#L80
https://github.com/bagnalla/zar/blob/main/order.v#L213
https://github.com/bagnalla/zar/blob/main/cotree.v#L2279
https://github.com/bagnalla/zar/blob/main/cotree.v#L2269
https://github.com/bagnalla/zar/blob/main/cotree.v#L2270
https://github.com/bagnalla/zar/blob/main/cotree.v#L2271
https://github.com/bagnalla/zar/blob/main/cotree.v#L2274
https://github.com/bagnalla/zar/blob/main/mu.v#L424

142

We defne the desired measure on Σ0
1 sets as an application of the sumT∗ operator for

A

summing a function over a cotree.

Defnition 116 (sumT∗). For type A and f : A → R∞
≥0, defne

sumT∗ f : TA
∗ → R∞

≥0 , sumTA f co , where:
A

sumTA , foldTA 0 f (λg. g true + g false)

with computation rules:

sumT∗ f (coleaf a) = f x
A

sumT∗ f (conode k) =
A

sumT∗ f (k true) + sumT∗ f (k false).
A A

: T ∗ → R∞ 1Defnition 117 (muT∗). Defne muT∗
≥0 , sumT∗ (λl. (lengthLB

l)).
LB LB LB Lbool 2

Proving Equidistribution With AlgCo In this section we use AlgCo to prove that that

any sequence of samples produced by a cotree sampler t is equidistributed wrt. the wpT∗
A

semantics of t. At a high level, our strategy is to “push forward” through the sampler the

assumption of uniform distribution of the source of random bits. We frst need the

following two lemmas:

Lemma 23 (wpT∗ flterT∗). Let A be a type and Q : A → B. Then,
A A

wpT∗ [Q] = wpT∗ 1 ◦ flterT∗ Q.
A A A

Lemma 24 (wpT∗ 1 equals muT∗ ◦ langT∗). Let A be a type and Q : A → B. Then,
A A A

wpT∗ 1 = muT∗ ◦ flterT∗ Q.
A A A

The proofs of Lemmas 23 and 24 both proceed by fusing the RHS to a single

comorphism and applying Lemma 6 to reduce the goal to straightforward induction over

fnite trees. It immediately follows that the probability of any event Q according to the

wpT∗ semantics of sampler t coincides with the measure of the preimage of Q under ft: A

https://github.com/bagnalla/zar/blob/main/equidistribution.v#L45
https://github.com/bagnalla/zar/blob/main/mu.v#L42
https://github.com/bagnalla/zar/blob/main/mu.v#L62
https://github.com/bagnalla/zar/blob/main/equidistribution.v#L50
https://github.com/bagnalla/zar/blob/main/cocwp_facts.v#L271
https://github.com/bagnalla/zar/blob/main/mu.v#L209

143

Lemma 25 (wpT∗ is measure of preimage). Let A be a type, Q : A → B, and t : TA
∗ . Then,

A

wpT∗ [Q] t = muT∗ (preimageT∗ Q t).
A LB A

To specify uniform distribution of the source of random bits, we use a variation of the

classic notion of “uniform distribution modulo 1” [KN12, BG22] generalized to Σ0
1

subsets of 2N .

Defnition 118 (Σ0-u.d.). A sequence {xi} of bitstreams is Σ0-uniformly distributed 1 1

(Σ0 1 n
i=0 [∃co

1-u.d.) when for every U : Σ0
1, limn→∞ n

P
=xi

U] = muT
L
∗
B

U.

In other words, a sequence of bitstreams is uniformly distributed when every Σ0
1 set

gets its “proper share” of samples as the number of samples goes to infnity.

Theorem 23 (Equidistribution of samples). Let A be a type, t : TA
∗ , Q : A → B, {xn} a

Σ0-u.d. sequence of bitstreams, and { ft(xn)} a sequence of samples obtained by mapping ft1

over {xn}. Then, { ft(xn)} is wpT∗ -equidistributed wrt. t:
A X1 n

lim [Q (ft(xi))] = wpT∗ t [Q] σ
n→∞ n A

i=0

Proof. Rewrite the RHS by Lemma 25 so the goal becomes: X1 n

lim [Q (ft(xi))] = muT∗ (preimageT∗ Q t).
n→∞ n LB A

i=0

Then let U = preimageTA
∗ Q t in the assumption of Σ0

1-u.d. to obtain:

X1 n

[∃colim preimageT∗ Q t] = muT∗ preimageT∗ Q t =xi A LB An→∞ n
i=0

from which the goal immediately follows since Q (ft(xi)) ⇐⇒ ∃co
=xi

preimageT∗ Q t. �
A

7.5 Compiling CF Trees to Cotrees

In this section we show how CF trees are interpreted in Zar as cotrees in a manner

that parallels the compilation from CF trees to interaction trees described in Section 4.5,

https://github.com/bagnalla/zar/blob/main/mu.v#L271
https://github.com/bagnalla/zar/blob/main/equidistribution.v#L71
https://github.com/bagnalla/zar/blob/main/equidistribution.v#L186
https://github.com/bagnalla/zar/blob/main/equidistribution.v#L93

144

and prove correctness (Theorem 24) of the compilation with respect to weakest

pre-expectation semantics of CF trees (Defnition 40) and cotrees (Defnition 110).

Section 7.6 builds on the results of this section to prove semantics preservation of the

interaction tree backend in Section 4.5, which ultimately leads to the ITree

equidistribution theorem (Theorem 9) in Section 5.3.

7.5.1 Cotree Iteration Combinator

The main challenge in compiling CF trees to cotrees is in providing an iteration

combinator with type ∀ I A, (I → TI
∗
+A) → I → TA

∗ for compiling fx nodes, to match the

use of ITree.iter in Defnition 45. It can’t be defned as a continuous extension because the

type I → TI
∗
+A is not an algebraic CPO in general (and not in particular when I is

specialized to the type Σ of program states). Thus we defne iterT∗ as follows:

Defnition 119 (iterT∗). For types I and A, f : I → TI
∗
+A, and z : I, defne

iterT∗ f z : TA
∗ , sup (Fn (λ . cobot)) z, where F : (I → T ∗) → I → T ∗ is given by:

A A A

F g i , f i �= λlr. match lr with

| inl j ⇒ cotau (g j)

| inr x ⇒ coleaf x

end.

cotree_iter =

\ f i ->

cotree_bind (f i) (\ lr ->

case lr of

Inl j -> cotree_iter f j

Inr x -> coleaf x)

Figure 7.5: Haskell extraction primitive for iterT∗ .

https://github.com/bagnalla/zar/blob/main/cotree.v#L1691

145

Figure 7.5 shows a Haskell extraction primitive for iterT∗ (not currently used by the

Zar system but could in principle allow for a purely executable cotree backend (without

the need for cotau nodes!)), justifed by the following computation rule:

Lemma 26 (iterT∗ computation rule). Let I and A be types, f : I → TI
∗
+A, and i : I. Then,

iterT ∗ A
f i = f i �= λlr. match lr with

| inl j ⇒ cotau (iterT ∗ A
f j)

| inr x ⇒ coleaf x

end.

With iterT∗ , we can compile CF trees to cotrees of type T1
∗
+Σ

, where 1 in the LHS of

the sum type encodes observation failure:

Defnition 120 (to cotree open). Given an unbiased CF tree t : T
Σ
cf , defne

to cotree open t : T1
∗
+Σ by induction on t:

to cotree open : T cf
Σ → T ∗ 1+Σ

leaf σ , coleaf (inr σ)

fail , coleaf (inl ())

choice k , conode (to cotree open ◦ k)

fx σ0 e g h , iterT∗ (λσ. if e σ then
Σ

to cotree open (g y) �=

λ lr. match lr with

| inl ⇒ coleaf (inr (inl ()))

| inr z ⇒ coleaf (inl z)

end

else

mapT∗ inr ()) σ0Σ

https://github.com/bagnalla/zar/blob/main/cotree.v#L1831
https://github.com/bagnalla/zar/blob/main/cocwp.v#L65
https://github.com/bagnalla/zar/blob/main/cocwp.v#L65

146

We then “tie the knot” analogously to Defnition 46 to transform cotrees of type T1
∗
+Σ

(“open” cotrees) into ones of type T
Σ
∗ (“closed”) where all occurrences of inl () are

replaced by recurrences to the root:

Defnition 121 (tie cotree). For t : T ∗ , defne tie cotree t : T it as:1+Σ Σ

tie cotree t , iterT∗ (λ . t) (),
Σ

and the overall compilation from CF trees to cotrees is given by the composition of

tie cotree after to cotree open:

Defnition 122 (to cotree). For t : T
Σ
cf , defne to cotree t : T

Σ
it as:

to cotree t , tie cotree (to cotree open t).

We then prove that to cotree open preserves wp, wlp, and cwp semantics of CF trees

via Lemmas 27, 28, and 29, respectively:

Lemma 27 (to cotree open wpT∗). Let b : B, t : T
Σ
cf an unbiased CF tree, and

Σ

f : Σ → R∞
≥0. Then,

twpb t f = wpT∗ ([b] + f) (to cotree open t).
Σ

Lemma 28 (to cotree open wlpT∗). Let b : B, t : T
Σ
cf an unbiased CF tree, and

Σ

f : Σ → R≤

≥
1
0. Then,

twlpb t f = wlpT∗ ([b] + f) (to cotree open t).
Σ

Lemma 29 (to cotree open cwpT∗). Let b : B, t : T
Σ
cf an unbiased CF tree, and

Σ

f : Σ → R∞
≥0. Then,

tcwp t f = cwpT∗ f (to cotree open t).
Σ

https://github.com/bagnalla/zar/blob/main/cocwp.v#L73
https://github.com/bagnalla/zar/blob/main/cocwp.v#L101
https://github.com/bagnalla/zar/blob/main/cocwp_facts.v#L459
https://github.com/bagnalla/zar/blob/main/cocwp_facts.v#L509
https://github.com/bagnalla/zar/blob/main/cocwp_facts.v#L516

147

As tie cotree replaces observation failures with recurrences to the root of the tree,

cwp reasoning on an “open” t : T1
∗
+Σ can be replaced with plain-old wp reasoning on its

“closed” form tie cotree t : T
Σ
∗:

Lemma 30 (tie cotree cwpT∗). Let A be a type, t : T1
∗
+A, and f : A → R∞

≥0 such that
Σ

wpT∗ (1 + 0) t < 1. Then,
A

cwpT∗ f t = wpT∗ f (tie cotree t).
A A

The precondition wpT∗ (1 + 0) t < 1 in the above lemma asserts that the probability of
A

observation failure in t is less than 1, i.e., that the program it was compiled from did not

condition on contradictory observations. Lemmas 29 and 30 together imply the overall

correctness of cotree compilation (where precondition twptrue t 0 < 1 again ensures

consistency of conditioned observations):

Theorem 24 (Correctness of cotree compilation). Let t : T
Σ
cf be an unbiased CF tree and

f : Σ → R∞
≥0 such that twptrue t 0 < 1. Then,

wpT∗ f (to cotree t) = tcwp t f .
Σ

The following section defnes a weakest pre-expectation style semantics on

interaction trees in terms of wpT∗ and extends the result of Theorem 24 to apply to the

interaction tree backend from Section 4.5.

7.6 Relating to Interaction Trees

Our strategy for verifying the correctness of the interaction tree backend of

Section 4.5 (i.e., for proving Theorem 8) is to extend the result of Theorem 24 by:

1. Defning a wp semantics on ITrees via wpT∗ through an injective mapping

icotree : ∀ A. TA
it → TA

∗ from ITrees to cotrees,

https://github.com/bagnalla/zar/blob/main/cocwp_facts.v#L1127
https://github.com/bagnalla/zar/blob/main/cocwp_facts.v#L1146

148

2. proving that ITrees and cotrees that are congruent in structure (Defnition 125) are

semantically equivalent with respect to their respective wp semantics, and

3. proving that the ITrees and cotrees generated by to itree (Defnition 47) and

to cotree (Defnition 122) are indeed congruent in structure and thus semantically

equivalent.

We begin with the injection of ITrees into the type of cotrees:

Defnition 123 (icotree). For t : TA
it an ITree sampler with element type A, defne

icotree t : TA
∗ by coinduction:

icotree : T it A → T ∗ A

icotree (ret a) , coleaf a

icotree (tau t) , cotau (icotree t)

icotree (vis get k) , conode (icotree ◦ k)

At this point the reason for having cotau nodes in the type of cotrees becomes clear,

for without them we would be unable to defne icotree via primitive recursion, making the

results of this section more difficult to obtain (e.g., attempting to describe the mapping via

a coinductive relation would be troubled by issues described in Section 6.1, namely the

need to explicitly rule out degenerate cases involving infnitely nested taus).

With icotree can now easily defne a wp semantics on ITrees by reduction to wpT∗ :

Defnition 124 (wpT it). For type A, f : A → R
≥
∞

0, and t : TA
it, defne wpT it f t : R∞

≥0 as:
A A

wpT it f t , wpT∗ f (icotree t).
A A

Next we defne a two-place relation between ITrees and cotrees that holds whenever

they are structurally congruent:

https://github.com/bagnalla/zar/blob/main/itree.v#L57
https://github.com/bagnalla/zar/blob/main/tree.v#L57
https://github.com/bagnalla/zar/blob/main/itree.v#L100

149

: T itDefnition 125 (≡T). For type A, defne ≡TA A → TA
∗ → P coinductively by the

inference rules:
≡T -ret ≡T -tau ≡T -node

a : A t1 ≡TA t2 ∀b : B, f b ≡TA g b

ret a ≡TA coleaf a tau t1 ≡TA cotau t2 vis get f ≡TA conode g

and show that ≡T implies semantic equivalence:

Lemma 31 (≡T implies semantic equivalence). Let A be a type, it : TA
it, ct : TA

∗ , and

f : A → R∞
≥0 such that it ≡TA ct. Then,

wpT it f it = wpT∗ f ct.
A A

Our goal is now reduced to proving that to itree (Defnition 47) and to cotree

(Defnition 122) produce congruent structures, from which semantic equivalence

immediately follows. To that end, we provide a series of lemmas for proving ≡T for map,

bind, and iter constructions:

Lemma 32 (≡T map). Let A and B be types, f : A → B, it : TA
it, and ct : TA

∗ such that

it ≡TA ct. Then,

ITree.map f it ≡TB mapT∗ f ct.
A

Lemma 33 (≡T bind). Let A and B be types, it : TA
it, ct : TA

∗ , f : A → TB
it, and

g : A → TB
∗ such that it ≡TA ct and ∀b : B, f b ≡TB g b. Then,

ITree.bind it f ≡TB ct �= g.

Lemma 34 (≡T iter). Let I and A be types, z : I, f : I → TI
it
+A, and g : I → TI

∗
+A such that

∀i : I, f i ≡TI+A g i. Then,

ITree.iter f z ≡TA iterT∗ g z.
A

We use the above lemmas to prove congruence of to itree open (Defnition 45) and

to cotree open (Defnition 120):

https://github.com/bagnalla/zar/blob/main/itree.v#L135
https://github.com/bagnalla/zar/blob/main/itree.v#L113
https://github.com/bagnalla/zar/blob/main/itree.v#L115
https://github.com/bagnalla/zar/blob/main/itree.v#L118
https://github.com/bagnalla/zar/blob/main/itree.v#L388
https://github.com/bagnalla/zar/blob/main/itree.v#L293
https://github.com/bagnalla/zar/blob/main/itree.v#L215
https://github.com/bagnalla/zar/blob/main/itree.v#L248

150

Lemma 35 (to itree open equivalent to to cotree open). Let t : T cf be a CF tree. Then,
Σ

to itree open t ≡T1+Σ to cotree open t.

and fnally congruence of outputs of to itree and to cotree:

Theorem 25 (to itree equivalent to to cotree). Let t : T
Σ
cf be a CF tree. Then,

to itree t ≡TΣ to cotree t.

from which it immediately follows (in conjunction with Lemma 31) that

wpT it f (to itree t) = wpT∗ f (to cotree t) for all t : T
Σ
cf and f : Σ → R∞

≥0, and then (from
Σ Σ

Theorem 24) fnally the correctness of ITree compilation:

Theorem 26 (Correctness of ITree compilation). Let t : T
Σ
cf be an unbiased CF tree and

f : Σ → R∞
≥0 such that twptrue t 0 < 1. Then,

wpT it f (to itree t) = tcwp t f .
Σ

which when taken together with Theorem 3 implies the overall end-to-end compiler

correctness result of Theorem 8.

https://github.com/bagnalla/zar/blob/main/itree.v#L308
https://github.com/bagnalla/zar/blob/main/itree.v#L322
https://github.com/bagnalla/zar/blob/main/itree.v#L434

151

8 Empirical Validation
... who knows whether proof of the

devil is also a proof of God?
Ivan Fyodorovich

This chapter provides empirical validation of the following aspects of samplers

compiled from cpGCL programs:

• Correctness. To validate Theorem 10, we compare the empirical distribution of

generated samples with the expected true distribution with respect to total variation (TV)

distance, Kullback-Leibler (KL) divergence [KL51], and SMAPE1 [Arm85].

• Performance. Although generated samplers are not guaranteed to be

entropy-optimal (in contrast to OPTAS [SFRM20b]), we measure statistics of the number

of uniform random bits required to obtain a sample.

We do not verify the programs in the following sections with respect to their cwp

semantics (except for Figure 1.1a), as we seek only to validate the correctness of the

compilation pipeline.

OCaml Shim All programs in this chapter are compiled to verifed ITree samplers (as

described in Section 4.5) and extracted to OCaml [Let08, LDF+21] for execution by the

driver code in Figure 8.1. Thus, correctness of extracted samplers depends on the PRNG

provided by the OCaml Random module being Σ0
1-u.d. (Def. 118). Sample records are

generated and written to disk for external analysis with handwritten Python code (see,

e.g., /extract/die/analyze.py) and statistics routines provided by scipy.stats [com22])

Trusted Computing Base Our TCB includes the Coq typechecker (and therefore the

OCaml compiler and runtime), the specifcations of cwp (Section 3.5) and equidistribution

(Section 5.3), and the OCaml extraction mechanism and driver code in Figure 8.1.

1 Symmetric Mean Absolute Percentage Error

https://github.com/bagnalla/zar/blob/main/extract/die/analyze.py

152

let _ = Random.self_init () (* Seed PRNG. *)

let rec run t = (* t : (boolE, 'a) itree *)

match observe t with (* Unfold ITree. *)

| RetF x -> x (* Produce sample. *)

| TauF t' -> run t' (* Skip tau node. *)

| VisF (_, k) -> (* Consume random bit. *)

run (k (Obj.magic (Random.bool ())))

Figure 8.1: OCaml shim for execution of ITree samplers. The destructor ‘observe’ (not to

be confused with the cpGCL command of the same name) unfolds the structure of ITree t.

Empirical Evaluation The remainder of this chapter contains tables showing results of

empirical evaluation of accuracy and entropy-performance of a collection of illustrative

cpGCL programs (all with respect to a sample size of 100,000). In each table, the frst

column denotes the values taken by the parameter of the distribution (e.g., the bias

parameter p for Bernoulli, range n for uniform, etc.). µx and σx denote the mean and

standard deviation of the posterior over variable x. TV, KL, and SMAPE denote the total

variation distance, Kullback-Leibler (KL) divergence [KL51], and symmetric mean

absolute percentage error [Arm85], respectively, of the empirical distribution with respect

to the true distribution. µbit and σbit denote the mean and standard deviation of the number

of uniform random bits required to obtain a sample.

Entropy Usage The Shannon entropy [Sha48] (or information entropy) of a probability

distribution provides a lower bound on the average number of uniformly random bits

required to obtain a single i.i.d. sample. Knuth and Yao [KY76] show that an

“entropy-optimal” sampler in the random bit model consumes no more than 2 bits on

average than the entropy of the encoded distribution. Our samplers are not guaranteed to

be entropy optimal, but that is a possible direction for future work.

153

duel (p : Q) :=
die (n : N) :=

a ← false; b ← false;
uniform n (λm. x ← m + 1)

while a = b do fip a p; fip b p; end

(b) Rolling an n-sided die.
(a) Dueling coins program with bias p ∈ (0, 1).

Figure 8.2: Dueling coins (left) and n-sided die (right) cpGCL programs.

Flip The command fip x p : cpGCL performs a probabilistic choice (“fips a coin”) with

probability p : Q of true (or “heads”) and assigns the result to variable x.

Defnition 126 (fip). For x : ident and p ∈ [0, 1] ⊆ Q, defne fip x p : cpGCL as:

fip x p , { x ← true } [p] { x ← false }.

8.1 Dueling Coins

The dueling coins program (Figure 8.2a) illustrates an i.i.d. loop (unbounded but

with no loop-carried dependence) simulating a fair coin using a biased one. The posterior

distribution over a is Bernoulli(1
2) for any input bias p ∈ (0, 1). The dueling coins illustrate

a situation in which the average number of bits required to obtain a sample (µbit ∼ 12

when p = 3
2 and µbit ∼ 135 when p = 20

1 , see Figure 8.1) substantially exceeds the entropy

(exactly 1) of the posterior.

8.2 Geometric Primes

The geometric primes program (Figure 1.1a) illustrates the use of a non-i.i.d. loop

and conditioning as follows: Repeatedly fip a coin with bias p, counting the number of

heads until landing one tails. Finally, observe that the number of heads counted is a prime

number. What, then, is the posterior over the number of heads h? The true posterior over

prime h is given by the probability mass function (pmf):

https://github.com/bagnalla/zar/blob/main/dueling_coins.v#L21
https://github.com/bagnalla/zar/blob/main/die.v#L21
https://github.com/bagnalla/zar/blob/main/prelude.v#L31

154

p µa σa TV KL SMAPE µbit σbit

2/3 0.50 0.50 2.02 × 10−3 1.20 × 10−5 2.02 × 10−3 12.0 9.39

4/5 0.50 0.50 2.16 × 10−3 1.30 × 10−5 2.16 × 10−3 27.59 23.49

1/20 0.50 0.50 2.83 × 10−3 2.30 × 10−5 2.83 × 10−3 134.97 129.07

Table 8.1: Accuracy and entropy usage for Prog. 8.2a with p = 2
3 , 5

4 , and 20
1 . mubit and σbit

increase as p is goes further from 1
2 due to increasing Shannon entropy of Bernoulli(p).

p µh σh TV KL SMAPE µbit σbit

1/2 2.64 1.10 2.33 × 10−3 6.40 × 10−5 7.63 × 10−2 9.66 7.21

2/3 3.24 1.93 2.48 × 10−3 1.10 × 10−4 4.12 × 10−2 25.31 20.59

1/5 2.19 0.44 7.44 × 10−4 5.0 × 10−6 5.19 × 10−3 142.51 132.70

Table 8.2: Accuracy and entropy usage for Prog. 1.1a with p = 1
2 , 3

2 , and 1
5 . µbit and σbit

are high when p = 1
5 due to low probability of ‘h is prime’, illustrating a general weakness

(entropy waste) of our rejection samplers when conditioning on low-probability events.

(1−p)h+1
Pr(X = h | h is prime) = P

k∈P (1−p)k+1 , where P denotes the set of prime numbers. Figure 8.2

shows accuracy and entropy statistics of the corresponding sampler compiled by Zar.

8.3 Uniform Sampling

Figure 8.3 shows accuracy and entropy usage for Prog. 8.2b for n = 6, 200, and

10000.

Zar and TensorFlow 2 We provide a Python 3 package (built from extracted samplers

using pythonlib [Cap22]) exposing a simple interface for constructing and generating

samples from verifed uniform samplers. To demonstrate the use of Zarpy as a

high-assurance drop-in replacement for unverifed samplers, we implement a TensorFlow

https://github.com/bagnalla/zar/tree/main/python/tf
https://10�65.19
https://10�44.12
https://10�31.10
https://10�29.66
https://10�57.63
https://10�36.40
https://10�52.83
https://10�32.30
https://10�52.16
https://10�31.30
https://12.09.39
https://10�52.02
https://10�31.20

155

n µh σh TV KL SMAPE µbit σbit

6 3.49 1.71 3.86 × 10−3 5.80 × 10−5 3.87 × 10−3 3.66 1.33

200 100.42 57.65 1.77 × 10−2 1.36 × 10−3 1.77 × 10−2 9.01 2.18

10k 5011.87 2892.0 1.24 × 10−1 7.33 × 10−2 1.28 × 10−1 15.62 2.74

Table 8.3: Accuracy and entropy usage for Prog. 8.2b with n = 6, 200, and 10k (with

Shannon entropies 2.59, 7.64, and 13.29, respectively). µbit and σbit therefore show

relatively good performance with near entropy-optimality.

2 [RM19] project (/python/tf/ in the source directory) for training an MNIST [LBBH98]

classifer via stochastic gradient descent. We observe a negligible effect on training

performance and excellent accuracy on the test set, as expected.

Comparison with FLDR and OPTAS The Fast Loaded Dice Roller

(FLDR) [SFRM20a] is a time- and space-efficient algorithm for rolling an n-sided die,

with implementations available in Python and C. Related to FLDR is OPTAS [SFRM20b],

a system for optimal approximate sampling from discrete distributions with respect to a

user-specifed number of random bits, also with implementations in Python and C.

Figure 8.4 shows a comparison of a 200-sided die in FLDR and OPTAS (with 32-bit

precision and the “hellinger” kernel) with OCaml and Python variants of Zar.

Initialization time is negligible for both Zar and FLDR. The Python Zar wrapper (created

via pythonlib [Cap22]) adds a slowdown on the order of 10x.

8.4 Discrete Gaussian

We defne discrete variants of Laplace and Gaussian distributions (based

on [CKS20]) as reusable subroutines for larger cpGCL programs (e.g., the hare and

tortoise program in Section 8.5). These subroutines differ from fip in Def. 126 by making

use of local variables. Although cpGCL lacks built-in support for procedure calls (which

https://github.com/bagnalla/zar/tree/main/python/tf
https://github.com/bagnalla/zar/tree/main/python/tf
https://github.com/bagnalla/zar/tree/main/python/tf
https://10�21.28
https://10�17.33
https://2892.01.24
https://10�29.01
https://10�31.77
https://10�21.36
https://10�33.66
https://10�53.87
https://10�35.80

156

µx σx TV KL SMAPE µbit σbit Tinit Ts

Zar (OCaml) 99.52 57.58 1.76 × 10−2 1.53 × 10−3 2.25 × 10−2 8.99 2.16 <1ms 132ms

Zar (Py) 99.51 57.69 1.96 × 10−2 1.82 × 10−3 2.21 × 10−2 9.0 2.18 <1ms 1.67s

FLDR (C) 99.39 57.79 1.96 × 10−2 1.18 × 10−3 2.21 × 10−2 9.01 2.18 <1ms 16ms

FLDR (Py) 99.32 57.70 2.08 × 10−2 1.36 × 10−3 2.33 × 10−2 9.0 2.16 <1ms 290ms

OPTAS (C) 99.50 57.74 1.85 × 10−2 1.20 × 10−3 2.10 × 10−2 8.55 1.27 3ms 45ms

OPTAS (Py) 99.58 57.69 2.12 × 10−2 1.37 × 10−3 2.37 × 10−2 8.55 1.27 15ms 330ms

Table 8.4: Comparison of 200-sided die samplers with output x. Tinit denotes time elapsed

over construction and initializion of the sampler, and Ts the total time to generate 100k

samples.

can be done in principle, as in [OKKM16]), they can be shallowly embedded if we take

careful account of variables modifed (i.e, “clobbered”) within subroutines.

8.4.1 Inverse Exponential Bernoulli

To sample from a discrete Laplace, we frst require a subroutine for sampling from a

Bernoulli distribution with inverse exponential bias. We begin with a preliminary routine

(bernoulli exponential 0 1) for the special case of 0 ≤ γ ≤ 1, which modifes variables k

and a (used as a counter and loop fag, respectively), followed by its generalization

(bernoulli exponential) to 0 ≤ γ, additionally modifying variables i and b (also a counter

and loop fag).

https://10�28.55
https://10�32.37
https://10�21.37
https://10�28.55
https://10�32.10
https://10�21.20
https://10�29.02.16
https://10�32.33
https://10�21.36
https://10�29.01
https://10�32.21
https://10�21.18
https://10�29.02.18
https://10�32.21
https://10�21.82
https://10�28.99
https://10�32.25
https://10�21.53

157

bernoulli exponential 0 1 (out : ident) (γ : Σ → Q) :=
k ← 0; a ← true;
while a do { k ← k + 1 } [γ] { a ← false} end;k+1

if even k then out ← true else out ← false end

Figure 8.3: Sampling from Bernoulli(exp(−γ)), where 0 ≤ γ ≤ 1

bernoulli exponential (out : ident) (γ : Σ → Q) :=
if γ ≤ 1
then bernoulli exponential 0 1 out γ
else i ← 1; b ← true;

while b ∧ i ≤ γ do bernoulli exponential 0 1 b 1; i ← i + 1 end;
if b then bernoulli exponential 0 1 out (γ − bγc) else out ← 0 end

Figure 8.4: Sampling from Bernoulli(exp(−γ)), where 0 ≤ γ

γ µout σout TV KL SMAPE µbit σbit

1/2 0.61 0.49 1.86 × 10−3 1.0 × 10−5 1.95 × 10−3 2.54 2.16

3/2 0.23 0.42 1.36 × 10−3 8.0 × 10−6 1.96 × 10−3 3.84 3.59

10 9.0 × 10−5 9.49 × 10−3 4.50 × 10−5 2.50 × 10−5 1.65 × 10−1 4.56 5.11

Table 8.5: Accuracy and entropy usage for Figure 8.4.

8.4.2 Discrete Laplace

A discrete analogue LapZ(b) [CKS20] of the Laplace distribution (useful for, e.g.,

differential privacy [GRS09], and as a subroutine for the discrete Gaussian in the

following section) with scale parameter b is defned by the probability mass function

https://github.com/bagnalla/zar/blob/main/gaussian.v#L34
https://github.com/bagnalla/zar/blob/main/gaussian.v#L62

158

e1/b−1 · e−|x|/bPrLapZ(b)(X = x) = . Figure 8.5 shows a cpGCL program for sampling from e1/b+1

LapZ(s
t) for positive integers s and t.

laplace (out : ident) (s t : N) :=
lp ← true;
while lp do

uniform t (λu.
ubernoulli exponential d (λs.);t

if d then
v ← 0; bernoulli exponential il 1;
while il do v ← v + 1; bernoulli exponential il 1 end;

1x ← u + t · v; y ← x ; fip c ;s 2

if c ∧ y = 0 then skip
else lp ← false; out ← (1 − 2 · [c]) · y

else skip)
end

Figure 8.5: Sampling from LapZ. Modifed variables: k, a, i, b, lp, d, v, il, x, y, and c.

Variables lp and il (“loop” and “inner loop”) are used for control fow. See [CKS20] for

explanation and proof-of-correctness of the sampling algorithm.

s, t µout σout TV KL SMAPE µbit σbit

1, 2 1.79 × 10−2 2.81 3.51 × 10−3 4.20 × 10−4 1.64 × 10−1 10.47 7.04

2, 1 1.79 × 10−3 0.60 1.47 × 10−3 7.10 × 10−5 5.30 × 10−2 9.77 8.17

5, 2 −8.50 × 10−4 0.44 1.24 × 10−3 1.09 × 10−4 1.37 × 10−1 15.53 12.38

Table 8.6: Accuracy and entropy usage for Figure 8.5 with scale parameter s
t .

https://github.com/bagnalla/zar/blob/main/gaussian.v#L127
https://10�41.37
https://10�31.09
https://10�40.44
https://10�29.77
https://10�55.30
https://10�37.10
https://10�30.60
https://10�41.64
https://10�34.20
https://10�22.81

159

8.4.3 Discrete Gaussian

A discrete analogue NZ(µ, σ2) [CKS20] of the Gaussian (“normal”) distribution

(useful for, e.g., lattice-based cryptography [ZSS20], and as a subroutine for the

hare-and-tortoise program in Section 8.5) with parameters µ and σ is defned by the
−(x−µ)2/2σ2

probability mass function PrNZ(µ,σ2)(X = x) = P
y

e

:Z e−(y−µ)2/2σ2 . Figure 8.6 shows a cpGCL

program for sampling from NZ(µ, σ2).

gaussian 0 (z : ident) (σ : Q) :=
ol ← false;

(|z|− σ
2

)2

while ¬ol do laplace z 1 bσc + 1; bernoulli exponential ol (λs. 2σ2
t) end

gaussian (out : ident) (µ : Σ → Z) (σ : Q) :=
gaussian out σ; out ← out + µ

Figure 8.6: Sampling from NZ(µ, σ2). Note that the entropy usage depends only on σ

and not µ. Modifed variables: k, a, i, b, lp, d, v, il, x, y, c, ol, z. Variable ol (“outer

loop”) is used for control fow. See [CKS20] for explanation and proof-of-correctness of

the sampling algorithm.

µ, σ µz σz TV KL SMAPE µbit σbit

0, 1 −3.03 × 10−3 1.0 2.71 × 10−3 1.03 × 10−4 4.49 × 10−2 26.68 24.43

10, 2 10.0 2.0 3.69 × 10−3 1.16 × 10−4 7.22 × 10−2 37.61 29.10

−50, 5 −50.01 5.01 6.11 × 10−3 4.46 × 10−4 5.70 × 10−2 43.66 31.20

Table 8.7: Accuracy and entropy usage for Figure 8.6 with mean µ and variance σ2.

https://github.com/bagnalla/zar/blob/main/gaussian.v#L214
https://10�45.70
https://10�34.46
https://10�47.22
https://10�31.16
https://10.02.03.69
https://10�44.49
https://10�31.03
https://10�31.02.71

160

hare tortoise (P : Σ → P) :=
uniform 10 (λn. t0 ← n);
tortoise ← t0; hare ← 0; time ← 0;
while hare < tortoise do

time ← time + 1;
tortoise → tortoise + 1;
{ gaussian jump 4 2;

hare ← hare + jump } [2] { skip }5

end;
observe P

(a) cpGCL program simulating a race between a

hare and tortoise.

P µt0 σt0 µbit σbit

true 4.49 2.87 193.88 220.06

time ≤ 10 3.80 2.79 273.87 378.82

time ≥ 10 6.18 2.31 596.68 359.85

time ≥ 20 6.40 2.25 1376.74 930.20

(b) Accuracy and entropy usage for Fig-

ure 8.7a. µt0 and σt0 denote the mean and std

deviation of the posterior over the tortoise’s

head start t0, conditioned on P.

Figure 8.7: Hare and tortoise cpGCL program (left) with accuracy and entropy statistics

(right).

8.5 Hare and Tortoise

Our fnal example shown in Figure 8.7a illustrates the use of the discrete Gaussian

subroutine along with a non-i.i.d. loop and conditioning to simulate a race between a hare

and a tortoise along a one-dimensional line, and the use of Zar to perform Bayesian

inference [BT11]. The tortoise begins with uniformly-distributed head start t0 and

proceeds at a steady pace of 1 unit per time step. The hare begins at position 0 and

occasionally (with probability 2
5) leaps forward a Gaussian-distributed distance. The race

ends when the hare reaches the tortoise, and then the terminal state is conditioned on

predicate P. For example, by setting P(time) = time ≥ 10 and querying the posterior over

t0, we ask: “Given that it took at least 10 time steps for the hare to reach the tortoise, what

are likely values for the tortoise’s head start?” (see Figure 8.7b).

https://github.com/bagnalla/zar/blob/main/hare.v#L82

161

9 Related Work

In this chapter we discuss related work not covered in previous chapters (see

Section 8.3 for comparison with FLDR [SFRM20a] and OPTAS [SFRM20b] samplers.

Works related generally to the Zar system appear in Section 9.1, and to the particular

framework of Algebraic Coinductives in Section 9.2.

9.1 Zar

Compilation of Probabilistic Programs Holtzen et al. [HMB19, HdBM20] compile

discrete probabilistic programs with bounded loops and conditioning to a symbolic

representation based on binary decision diagrams (BDDs) [DM02, Ake78], exploiting

independence of variables for efficient exact inference. Our CF trees are not as highly

optimized (and we currently do not support exact inference), but we remark that BDDs,

representing fnite Boolean functions, are fundamentally insufficient for programs with

unbounded loops for which no upper bound can be placed on the number of input bits

required to obtain a sample.

Huang et al. [HTM17] compile PPs with continuous distributions (but not loops) to

MCMC samplers for efficient approximate inference. MCMC algorithms generally

provide better inference performance than Zar (which employs an “ordinary Monte Carlo”

(OMC) strategy), but suffer from reliability issues (see Chapter 1). Zar is, to our

knowledge, the only formally verifed compiler for PPs with loops and conditioning.

Verifed Probabilistic Systems Wang et al. [WHR21] implement a type system based

on the notion of guide types to guarantee compatibility between model and guide functions

in a PPL that compiles to Pyro [BCJ+19]. Pyro is more versatile than Zar, as it supports

continuous distributions and programmable inference, but provides no formal guarantees

on correctness of compilation or inference. Selsam et al. [SLD18] implement Certigrad, a

162

PP system for stochastic optimization with formal correctness guarantees in the

Lean [MKA+15] theorem prover, but which does not support conditioning or inference.

The Conditional Probabilistic Guarded Command Language (cpGCL) The cpGCL

and its corresponding cwp semantics were introduced by Olmedo et al. [OGJ+18] and

further developed by Kaminski [Kam19] (including discussion of nondeterminism and

expected running time) and Szymcak and Katoen [SK20] (adding support for continuous

distributions). These works focus on using cwp as a program logic for verifying individual

programs and metatheoretical properties of cpGCL, in contrast to Zar which focuses on

verifcation of compilation to executable samplers.

Interaction Trees Interaction trees have been used to verify compilation of an

imperative programming language [XZH+20], networked servers [KLL+19, LRG20], an

HTTP key-value server [ZHK+21], and transactional objects [LXK+22]. The Zar system

presents a novel application of interaction trees to verifed executable semantics of

probabilistic programs, and employs a novel domain-theoretic framework for reasoning

about them (Section 4.5).

Empirical Evaluation of Probabilistic Programming Systems Dutta et al. [DLHM18]

implement a PPL testing framework called ProbFuzz. ProbFuzz generates random test

programs for various PPLs and compares their inference results to detect irregularities.

We expect that Zar could be incorporated into ProbFuzz as a reference implementation

against which the accuracy other discrete PPLs is evaluated.

9.2 AlgCo

This section discusses works related to the proof framework of Algebraic

Coinductives described in Chapters 6 and 7.

163

Parameterized Coinduction (paco) The paco library [HNDV13] provides the most

well known generalization of primitive coinduction in Coq. Paco replaces the syntactic

guardedness condition for coinductive proofs with a semantic one, leading to a greater

degree of compositionality in comparison to Coq’s built in cofx mechanism, and

alleviation of some common pitfalls, e.g., misapplication of coinduction hypotheses that

are not checked until QED-time. Coinductive properties defned using paco are still,

however, defned as greatest fxed points of monotone functionals, and thus suffer from the

problems described in the introduction when attempting to defne functional mappings

over coinductive structures. With AlgCo, we take an entirely different approach by

carving out a subset of coinductive types (those forming algebraic CPOs) for which

coinductive reasoning can be replaced by inductive reasoning. The cawu framework of

Pous [Pou16] generalizes the theory of parameterized coinduction and simplifes its

treatment of “up-to” [Mil89, San98] enhancements of bisimulation, but fundamentally

stands in the same relation as paco to the present work.

Copatterns Abel et al. [APTS13] present a type-theoretic foundation for programming

with infnite data such as streams via observations (i.e., copattern matching). As the

categorical dual to inductive pattern matching, which provides a general elimination

scheme for inductive data, copattern matching provides a general introduction scheme for

coinductive data. AlgCo flls a gap in the middle by providing a continuous elimination

scheme for algebraic coinductives (Lemma 5). For example, the function

sum : Stream R∞
≥0 → R∞

≥0 described in Section 6.1 can’t be defned via copatterns because

the codomain is not coinductive, but it can be defned as a continuous extension because

the domain is algebraic.

Regular Coinductives Jeannin et al. [JKS17] extend OCaml with support for “regular”

(fnitely representable) coinductives, and equip them with a general elimination scheme

164

parameterized by user-specifed solvers, allowing the programmer to defne mappings

from regular coinductive structures into CPOs (e.g., mapping regular infnitary λ terms to

sets of their free variables via a fxpoint solver). Many coinductive structures we are

interested in, however, such as the cotree samplers generated from probabilistic programs

described in Section 7.3), are not always fnitely representable. The notion of algebraic

CPO generalizes to a broader class of coinductive structures while still providing a general

(albeit less computable) principle for elimination.

Friendly Functions and Sized Types Syntactic guardedness conditions on primitive

corecursive defnitions are relaxed in the Isabelle/HOL proof assistant via so-called

“friendly functions” [BBL+17], which preserve productivity of their arguments.

Corecursive calls are thus allowed to appear under applications of friendly functions.

Sized types [HPS96] have been implemented in the Agda proof assistant [Tea22] to fulfll

a similar role in broadening the scope of allowable corecursive defnitions, and have been

used to implement the concatenation and closure operators on coinductive tries [Tra15] as

in Section 6.8.1.

Continuous Extensions Lochbihler and Hölzl [LH14] employ concepts from domain

theory and topology to defne the flter operation on streams as a continuous extension (the

“consumer view”) of a function on fnite lists, and reduce proofs about it to induction over

lists. AlgCo does not explicitly require any concepts from topology and generalizes from

stream transformers to a wide variety of continuous mappings over coinductive structures

including real-valued semantics (Section 7.3) and propositional functions (Section 6.5).

Rusu and Nowak take a similar approach for defning corecursive functions based on

fnite approximations of CPO elements [RN22] to defne flter and mirror operations on

streams and rose trees, respectively. We identify the underlying abstraction of algebraic

165

CPO and provide a principled and coherent story around the composition, verifcation, and

execution of such functions within the AlgCo framework.

166

10 Conclusion

10.1 Achievements of This Dissertation

This dissertation presents the frst formalization of cpGCL and its cwp semantics in a

proof assistant, and implements Zar, the frst formally verifed compiler from a discrete

PPL to proved-correct executable samplers. Zar uses a novel intermediate representation,

CF trees, to optimize and debias probabilistic choices. CF trees are compiled to

executable interaction trees encoding the sampling semantics of source programs in the

random bit model. The full compilation pipeline is formally proved to satisfy an

equidistribution theorem showing that the empirical distribution of generated samples

converges to the true posterior distribution of the source cpGCL program. Zar’s backend

supports extraction to OCaml and Python and has been used to generate and run samplers

for a collection of probabilistic programs including the discrete Gaussian distribution.

We also present AlgCo (Algebraic Coinductives), a formal type-theoretic framework

for reasoning about continuous functions over the class of coinductive structures that form

algebraic CPOs. We introduce the basic concepts of the framework and provide a Coq

implementation in the AlgCo library. We demonstrate its usefulness by implementing and

verifying a number of illustrative examples including a stream variant of the sieve of

Eratosthenes, a regular expression library based on Brzozowski derivatives, and fnally to

weakest pre-expectation reasoning over discrete distribution samplers in the random bit

model, enabling the verifcation of coinductive sampling processes compiled by Zar.

While the theory of algebraic CPOs has been well known to domain theorists [Gun92], the

practical implications of its connection to coinductive types have gone under-appreciated.

We are not aware of any prior work to explicitly draw this connection and elaborate on its

applications in a theorem proving environment.

https://github.com/bagnalla/algco/

167

10.2 Directions for Future Work

Here we discuss possible directions for extension of the work presented in this

dissertation.

Continuous Distributions The cpGCL (and thus the Zar system) supports only discrete

posterior probability distributions over program states. It may be feasible to work with a

variant of cpGCL in which the binary probabilistic choice command is replaced with a

command to generate a single real number uniformly at random from the unit interval

[0, 1] lazily via its binary expansion representation, one bit at a time. So long as we

constrain ourselves to continuous operations over lazily generated reals (perhaps using the

machinery of AlgCo), output samples can be obtained up to any desired precision given

enough random bits from the sampling environment.

More Efficient Sampling The samplers generated by Zar employ a rejection sampling

scheme to produce samples that are independent and identically distributed (i.i.d.). The

downside of this approach is that performance may suffer when the probability of

rejection is high. Approximating the posterior distribution of a cpGCL program via Monte

Carlo techniques with samplers produced by Zar may therefore be infeasible for programs

that condition on low-likelihood observations (since observation failure is implemented by

rejection in the sampling semantics). The most common technique for improving

scalability of approximate sampling-based inference is Markov Chain Monte

Carlo [Gey11] sampling, particularly the Metropolis-Hastings and Gibbs sampling

algorithms. MCMC samplers produce sequences of samples that are not necessarily i.i.d.

but which are distributed in the long run according to the desired posterior, and are able to

generate a large number of samples more quickly than alternative methods. Extending the

Zar system to generate MCMC samplers would likely provide a dramatic performance

improvement for approximate posterior inference of cpGCL programs. We also note that

168

equidistribution theorem statement (Theorem 10) is agnostic to the implementation details

of the sampler and so in principle could apply equally well to an MCMC backend.

Other Methods of Approximate Inference The wp semantics on cotrees

(Defnition 108) is defned as the supremum of a sequence of approximations tending

toward the true probability from below. This leads to a straightforward algorithm for

approximating the posterior probability of a given predicate over the sample space by

simply computing successive approximations up to the desired precision. In some cases

this approach may be more efficient than sampling-based inference, especially when one

only cares to determine a lower bound on the probability of an event.

169

References

[Adá21] Jirı́ Adámek. Algebraic cocompleteness and fnitary functors. Log.
Methods Comput. Sci., 17(2), 2021. URL:
https://lmcs.episciences.org/7524

[AFG+14] Diego F. Aranha, Pierre-Alain Fouque, Benoı̂t Gérard, Jean-Gabriel
Kammerer, Mehdi Tibouchi, and Jean-Christophe Zapalowicz. GLV/GLS
decomposition, power analysis, and attacks on ECDSA signatures with
single-bit nonce bias. In Palash Sarkar and Tetsu Iwata, editors, Advances
in Cryptology - ASIACRYPT 2014 - 20th International Conference on the
Theory and Application of Cryptology and Information Security,
Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I,
volume 8873 of Lecture Notes in Computer Science, pages 262–281.
Springer, 2014. URL: https://doi.org/10.1007/978-3-662-45611-8 14,
doi:10.1007/978-3-662-45611-8 14

[Ahm04] Amal Jamil Ahmed. Semantics of types for mutable state. PhD thesis,
Princeton University, 2004. TR-713-04. URL:
https://www.cs.princeton.edu/techreports/2004/713.pdf

[AJ94] Samson Abramsky and Achim Jung. Domain theory. In S. Abramsky,
D. M. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in
Computer Science, volume 3, pages 1–168. Clarendon Press, 1994.

[AK87] Randy Allen and Ken Kennedy. Automatic translation of fortran programs
to vector form. ACM Trans. Program. Lang. Syst., 9(4):491–542, 1987.
URL: https://doi.org/10.1145/29873.29875, doi:10.1145/29873.29875

[Ake78] Sheldon B. Akers. Binary decision diagrams. IEEE Trans. Computers,
27(6):509–516, 1978. URL: https://doi.org/10.1109/TC.1978.1675141,
doi:10.1109/TC.1978.1675141

[AL21] Andrew W. Appel and Xavier Leroy. Efficient extensional binary tries.
CoRR, abs/2110.05063, 2021. URL: https://arxiv.org/abs/2110.05063,
arXiv:2110.05063

[ANT+20] Diego F. Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi
Tibouchi, and Yuval Yarom. Ladderleak: Breaking ECDSA with less than
one bit of nonce leakage. In Jay Ligatti, Xinming Ou, Jonathan Katz, and
Giovanni Vigna, editors, CCS ’20: 2020 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event, USA, November
9-13, 2020, pages 225–242. ACM, 2020. URL:
https://doi.org/10.1145/3372297.3417268, doi:10.1145/3372297.3417268

https://lmcs.episciences.org/7524
https://doi.org/10.1007/978-3-662-45611-8_14
http://dx.doi.org/10.1007/978-3-662-45611-8_14
https://www.cs.princeton.edu/techreports/2004/713.pdf
https://doi.org/10.1145/29873.29875
http://dx.doi.org/10.1145/29873.29875
https://doi.org/10.1109/TC.1978.1675141
http://dx.doi.org/10.1109/TC.1978.1675141
https://arxiv.org/abs/2110.05063
http://arxiv.org/abs/2110.05063
https://doi.org/10.1145/3372297.3417268
http://dx.doi.org/10.1145/3372297.3417268

170

[APTS13] Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer.
Copatterns: programming infnite structures by observations. In Roberto
Giacobazzi and Radhia Cousot, editors, The 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’13, Rome, Italy - January 23 - 25, 2013, pages 27–38. ACM, 2013.
URL: https://doi.org/10.1145/2429069.2429075,
doi:10.1145/2429069.2429075

[Arm85] J. Scott Armstrong. Long-Range Forecasting: From Crystal Ball to
Computer. John Wiley & Sons, New York, 1985.

[BBL+17] Jasmin Christian Blanchette, Aymeric Bouzy, Andreas Lochbihler, Andrei
Popescu, and Dmitriy Traytel. Friends with benefts - implementing
corecursion in foundational proof assistants. In Hongseok Yang, editor,
Programming Languages and Systems - 26th European Symposium on
Programming, ESOP 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings, volume 10201 of Lecture Notes
in Computer Science, pages 111–140. Springer, 2017. URL:
https://doi.org/10.1007/978-3-662-54434-1 5,
doi:10.1007/978-3-662-54434-1 5

[BC85] Joseph L. Bates and Robert L. Constable. Proofs as programs. ACM
Trans. Program. Lang. Syst., 7(1):113–136, 1985. URL:
https://doi.org/10.1145/2363.2528, doi:10.1145/2363.2528

[BCJ+19] Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer,
Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul
Horsfall, and Noah D Goodman. Pyro: Deep universal probabilistic
programming. The Journal of Machine Learning Research,
20(1):973–978, 2019.

[Ber05] Yves Bertot. Filters on coinductive streams, an application to
eratosthenes’ sieve. In International Conference on Typed Lambda
Calculi and Applications, pages 102–115. Springer, 2005.

[Ber06] Yves Bertot. Coinduction in coq. arXiv preprint cs/0603119, 2006.

[BG22] Verónica Becher and Serge Grigorieff. Randomness and uniform
distribution modulo one. Inf. Comput., 285(Part):104857, 2022. URL:
https://doi.org/10.1016/j.ic.2021.104857, doi:10.1016/j.ic.2021.104857

[BGJM11] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng.
Handbook of markov chain monte carlo. CRC press, 2011.

https://doi.org/10.1145/2429069.2429075
http://dx.doi.org/10.1145/2429069.2429075
https://doi.org/10.1007/978-3-662-54434-1_5
http://dx.doi.org/10.1007/978-3-662-54434-1_5
https://doi.org/10.1145/2363.2528
http://dx.doi.org/10.1145/2363.2528
https://doi.org/10.1016/j.ic.2021.104857
http://dx.doi.org/10.1016/j.ic.2021.104857

171

[BH19] Joachim Breitner and Nadia Heninger. Biased nonce sense: Lattice attacks
against weak ECDSA signatures in cryptocurrencies. In Ian Goldberg and
Tyler Moore, editors, Financial Cryptography and Data Security - 23rd
International Conference, FC 2019, Frigate Bay, St. Kitts and Nevis,
February 18-22, 2019, Revised Selected Papers, volume 11598 of Lecture
Notes in Computer Science, pages 3–20. Springer, 2019. URL:
https://doi.org/10.1007/978-3-030-32101-7 1,
doi:10.1007/978-3-030-32101-7 1

[Bil04] Jeffrey A Bilmes. Graphical models and automatic speech recognition. In
Mathematical foundations of speech and language processing, pages
191–245. Springer, 2004.

[BK08] Yves Bertot and Vladimir Komendantsky. Fixed point semantics and
partial recursion in coq. In Sergio Antoy and Elvira Albert, editors,
Proceedings of the 10th International ACM SIGPLAN Conference on
Principles and Practice of Declarative Programming, July 15-17, 2008,
Valencia, Spain, pages 89–96. ACM, 2008. URL:
https://doi.org/10.1145/1389449.1389461, doi:10.1145/1389449.1389461

[Blu98] Lenore Blum. Complexity and real computation. Springer, 1998. URL:
https://www.worldcat.org/oclc/37004484

[Bou18] Simon Pierre Boulier. Extending type theory with syntactic models.
(Etendre la théorie des types ` eles syntaxiques). PhD thesis, a l’aide de mod`
Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la
Loire, France, 2018. URL: https://tel.archives-ouvertes.fr/tel-02007839

[BR07] Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. Measure
theory, volume 1. Springer, 2007.

[Bro13] Luitzen Egbertus Jan Brouwer. Intuitionism and formalism. Bulletin of
the American Mathematical Society, 20(2):81–96, 1913.

[BSB20] Alexander Bagnall, Gordon Stewart, and Anindya Banerjee. Coinductive
trees for exact inference of probabilistic programs. In Languages for
Inference (LAFI), 2020.

[BT11] George E. .P. Box and George C. Tiao. Bayesian inference in statistical
analysis. John Wiley & Sons, 2011.

[Cap22] Jane Street Capital. pythonlib, 2022. URL:
https://github.com/janestreet/pythonlib

[CD08] Mark Chavira and Adnan Darwiche. On probabilistic inference by
weighted model counting. Artifcial Intelligence, 172(6-7):772–799, 2008.

https://doi.org/10.1007/978-3-030-32101-7_1
http://dx.doi.org/10.1007/978-3-030-32101-7_1
https://doi.org/10.1145/1389449.1389461
http://dx.doi.org/10.1145/1389449.1389461
https://www.worldcat.org/oclc/37004484
https://tel.archives-ouvertes.fr/tel-02007839
https://github.com/janestreet/pythonlib

172

[CGH+17] Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben
Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li,
and Allen Riddell. Stan: A probabilistic programming language. Journal
of statistical software, 76(1), 2017.

[CH88] Thierry Coquand and Gérard P. Huet. The calculus of constructions. Inf.
Comput., 76(2/3):95–120, 1988. URL:
https://doi.org/10.1016/0890-5401(88)90005-3,
doi:10.1016/0890-5401(88)90005-3

[Cha10] Arthur Charguéraud. The optimal fxed point combinator. In Matt
Kaufmann and Lawrence C. Paulson, editors, Interactive Theorem
Proving, First International Conference, ITP 2010, Edinburgh, UK, July
11-14, 2010. Proceedings, volume 6172 of Lecture Notes in Computer
Science, pages 195–210. Springer, 2010. URL:
https://doi.org/10.1007/978-3-642-14052-5 15,
doi:10.1007/978-3-642-14052-5 15

[Cha17] Arthur Charguéraud. Coqandaxioms, 2017. URL:
https://github.com/coq/coq/wiki/CoqAndAxioms

[Cha23] Arthur Charguéraud. Tlc: a non-constructive library for coq, 2023. URL:
https://www.chargueraud.org/softs/tlc/

[Chi65] Charles S Chihara. On the possibility of completing an infnite process.
The Philosophical Review, 74(1):74–87, 1965.

[Chl22] Adam Chlipala. Certifed programming with dependent types: a
pragmatic introduction to the Coq proof assistant. MIT Press, 2022.

[Chu28] Alonzo Church. On the law of excluded middle. Bulletin of the American
Mathematical Society, 34(1):75–78, 1928.

[CKS20] Clément L Canonne, Gautam Kamath, and Thomas Steinke. The discrete
gaussian for differential privacy. Advances in Neural Information
Processing Systems, 33:15676–15688, 2020.

[CMS22] David Chiang, Colin McDonald, and Chung-chieh Shan. Exact recursive
probabilistic programming. arXiv preprint arXiv:2210.01206, 2022.

[com22] The SciPy community. scipy.stats, 2022. URL:
https://docs.scipy.org/doc/scipy/reference/stats.html

[Coo90] Gregory F. Cooper. The computational complexity of probabilistic
inference using bayesian belief networks. Artif. Intell., 42(2-3):393–405,
1990. URL: https://doi.org/10.1016/0004-3702(90)90060-D,
doi:10.1016/0004-3702(90)90060-D

https://doi.org/10.1016/0890-5401(88)90005-3
http://dx.doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1007/978-3-642-14052-5_15
http://dx.doi.org/10.1007/978-3-642-14052-5_15
https://github.com/coq/coq/wiki/CoqAndAxioms
https://www.chargueraud.org/softs/tlc/
https://docs.scipy.org/doc/scipy/reference/stats.html
https://doi.org/10.1016/0004-3702(90)90060-D
http://dx.doi.org/10.1016/0004-3702(90)90060-D

173

[coq23a] Library coq.logic.classicalepsilon, 2023. URL:
https://coq.inria.fr/library/Coq.Logic.ClassicalEpsilon.html

[coq23b] Library coq.reals.reals, 2023. URL:
https://coq.inria.fr/library/Coq.Reals.Reals.html

[CRN+13] Guillaume Claret, Sriram K Rajamani, Aditya V Nori, Andrew D Gordon,
and Johannes Borgström. Bayesian inference using data fow analysis. In
Proceedings of the 2013 9th joint meeting on foundations of software
engineering, pages 92–102, 2013.

[CTSLM19] Marco F Cusumano-Towner, Feras A Saad, Alexander K Lew, and
Vikash K Mansinghka. Gen: a general-purpose probabilistic programming
system with programmable inference. In Proceedings of the 40th acm
sigplan conference on programming language design and implementation,
pages 221–236, 2019.

[CTY06] Nick Chater, Joshua B Tenenbaum, and Alan Yuille. Probabilistic models
of cognition: Conceptual foundations. Trends in cognitive sciences,
10(7):287–291, 2006.

[Cur34] Haskell B Curry. Functionality in combinatory logic. Proceedings of the
National Academy of Sciences, 20(11):584–590, 1934.

[Dev86] Luc Devroye. Non-Uniform Random Variate Generation. Springer, 1986.
URL: https://doi.org/10.1007/978-1-4613-8643-8,
doi:10.1007/978-1-4613-8643-8

[DG04] Rodney G Downey and Evan J Griffiths. Schnorr randomness. The
Journal of Symbolic Logic, 69(2):533–554, 2004.

[Dij75] Edsger W Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Communications of the ACM, 18(8):453–457,
1975.

[DLHM18] Saikat Dutta, Owolabi Legunsen, Zixin Huang, and Sasa Misailovic.
Testing probabilistic programming systems. In Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages
574–586, 2018.

[DM02] Adnan Darwiche and Pierre Marquis. A knowledge compilation map.
Journal of Artifcial Intelligence Research, 17:229–264, 2002.

[DZHM19] Saikat Dutta, Wenxian Zhang, Zixin Huang, and Sasa Misailovic. Storm:
program reduction for testing and debugging probabilistic programming

https://coq.inria.fr/library/Coq.Logic.ClassicalEpsilon.html
https://coq.inria.fr/library/Coq.Reals.Reals.html
https://doi.org/10.1007/978-1-4613-8643-8
http://dx.doi.org/10.1007/978-1-4613-8643-8

174

systems. In Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 729–739, 2019.

[Elk21] Derek Elkins. Tying the knot, 2021. URL:
https://wiki.haskell.org/Tying the Knot

[FNSB15] Alireza Farasat, Alexander Nikolaev, Sargur N Srihari, and
Rachael Hageman Blair. Probabilistic graphical models in modern social
network analysis. Social Network Analysis and Mining, 5(1):62, 2015.

[Fri04] Nir Friedman. Inferring cellular networks using probabilistic graphical
models. Science, 303(5659):799–805, 2004.

[GCST19] Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau.
Defnitional proof-irrelevance without k. Proceedings of the ACM on
Programming Languages, 3(POPL):1–28, 2019.

[Gey11] Charles Geyer. Introduction to markov chain monte carlo. Handbook of
Markov Chain Monte Carlo, 20116022:45, 2011.

[GMR+12] Noah Goodman, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz, and
Joshua B Tenenbaum. Church: a language for generative models. arXiv
preprint arXiv:1206.3255, 2012.

[Gro23] Jason Gross. Coinductive extensionality, 2023. URL:
https://stackoverfow.com/a/69905520

[GRS09] Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. Universally
utility-maximizing privacy mechanisms. In Michael Mitzenmacher, editor,
Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009,
pages 351–360. ACM, 2009. URL:
https://doi.org/10.1145/1536414.1536464, doi:10.1145/1536414.1536464

[GS14] Noah D Goodman and Andreas Stuhlmüller. The design and
implementation of probabilistic programming languages, 2014.

[Gun92] Carl A Gunter. Semantics of programming languages: structures and
techniques. MIT press, 1992.

[H+56] Thomas Little Heath et al. The thirteen books of Euclid’s Elements.
Courier Corporation, 1956.

[Hag89] Tatsuya Hagino. Codatatypes in ML. J. Symb. Comput., 8(6):629–650,
1989. URL: https://doi.org/10.1016/S0747-7171(89)80065-3,
doi:10.1016/S0747-7171(89)80065-3

https://wiki.haskell.org/Tying_the_Knot
https://stackoverflow.com/a/69905520
https://doi.org/10.1145/1536414.1536464
http://dx.doi.org/10.1145/1536414.1536464
https://doi.org/10.1016/S0747-7171(89)80065-3
http://dx.doi.org/10.1016/S0747-7171(89)80065-3

175

[Hal13] Paul R Halmos. Measure theory, volume 18 of Graduate Texts in
Mathematics. Springer, 2013. Originally published by Litton Educational
Publishing, Inc., 1950. URL: https://doi.org/10.1007/978-1-4684-9440-2,
doi:10.1007/978-1-4684-9440-2

[HdBM20] Steven Holtzen, Guy Van den Broeck, and Todd D. Millstein. Scaling
exact inference for discrete probabilistic programs. Proc. ACM Program.
Lang., 4(OOPSLA):140:1–140:31, 2020. URL:
https://doi.org/10.1145/3428208, doi:10.1145/3428208

[HMB19] Steven Holtzen, Todd Millstein, and Guy Van den Broeck. Symbolic exact
inference for discrete probabilistic programs. arXiv preprint
arXiv:1904.02079, 2019.

[HNDV13] Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. The
power of parameterization in coinductive proof. In Roberto Giacobazzi
and Radhia Cousot, editors, The 40th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’13, Rome,
Italy - January 23 - 25, 2013, pages 193–206. ACM, 2013. URL:
https://doi.org/10.1145/2429069.2429093, doi:10.1145/2429069.2429093

[How80] William A Howard. The formulae-as-types notion of construction. To HB
Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,
44:479–490, 1980.

[HPS96] John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of
reactive systems using sized types. In Hans-Juergen Boehm and Guy L.
Steele Jr., editors, Conference Record of POPL’96: The 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Papers Presented at the Symposium, St. Petersburg Beach, Florida, USA,
January 21-24, 1996, pages 410–423. ACM Press, 1996. URL:
https://doi.org/10.1145/237721.240882, doi:10.1145/237721.240882

[HTM17] Daniel Huang, Jean-Baptiste Tristan, and Greg Morrisett. Compiling
markov chain monte carlo algorithms for probabilistic modeling. In Albert
Cohen and Martin T. Vechev, editors, Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages
111–125. ACM, 2017. URL: https://doi.org/10.1145/3062341.3062375,
doi:10.1145/3062341.3062375

[INR22] INRIA. Coq reference manual, 2022. URL: https://coq.inria.fr/refman/#

[INR23] INRIA. Typing rules, 2023. URL:
https://coq.inria.fr/distrib/current/refman/language/cic.html

https://doi.org/10.1007/978-1-4684-9440-2
http://dx.doi.org/10.1007/978-1-4684-9440-2
https://doi.org/10.1145/3428208
http://dx.doi.org/10.1145/3428208
https://doi.org/10.1145/2429069.2429093
http://dx.doi.org/10.1145/2429069.2429093
https://doi.org/10.1145/237721.240882
http://dx.doi.org/10.1145/237721.240882
https://doi.org/10.1145/3062341.3062375
http://dx.doi.org/10.1145/3062341.3062375
https://coq.inria.fr/refman/#
https://coq.inria.fr/distrib/current/refman/language/cic.html

176

[Isa03] Michael Isard. Pampas: Real-valued graphical models for computer
vision. In 2003 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2003. Proceedings., volume 1, pages I–I. IEEE,
2003.

[JD93] Mark P Jones and Luc Duponcheel. Composing monads. Technical
report, Technical Report YALEU/DCS/RR-1004, Department of
Computer Science. Yale . . . , 1993.

[JKS17] Jean-Baptiste Jeannin, Dexter Kozen, and Alexandra Silva. Cocaml:
Functional programming with regular coinductive types. Fundam.
Informaticae, 150(3-4):347–377, 2017. URL:
https://doi.org/10.3233/FI-2017-1473, doi:10.3233/FI-2017-1473

[Jun90] Achim Jung. Cartesian closed categories of algebraic cpos. Theor.
Comput. Sci., 70(2):233–250, 1990. URL:
https://doi.org/10.1016/0304-3975(90)90124-Z,
doi:10.1016/0304-3975(90)90124-Z

[Kam19] Benjamin Lucien Kaminski. Advanced weakest precondition calculi for
probabilistic programs. PhD thesis, RWTH Aachen University, Germany,
2019. URL: http://publications.rwth-aachen.de/record/755408

[Kec12] Alexander Kechris. Classical descriptive set theory, volume 156. Springer
Science & Business Media, 2012.

[KF09] Daphne Koller and Nir Friedman. Probabilistic graphical models:
principles and techniques. MIT press, 2009.

[KL51] Solomon Kullback and Richard A Leibler. On information and
sufficiency. The annals of mathematical statistics, 22(1):79–86, 1951.

[Kle52] Stephen Cole Kleene. Introduction to metamathematics. 1952.

[KLL+19] Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf
Honoré, William Mansky, Benjamin C Pierce, and Steve Zdancewic.
From c to interaction trees: specifying, verifying, and testing a networked
server. In Proceedings of the 8th ACM SIGPLAN International
Conference on Certifed Programs and Proofs, pages 234–248, 2019.

[KN12] Lauwerens Kuipers and Harald Niederreiter. Uniform distribution of
sequences. Courier Corporation, 2012.

[KN15] Mahmoud Khademi and Nedialko S Nedialkov. Probabilistic graphical
models and deep belief networks for prognosis of breast cancer. In 2015
IEEE 14th International Conference on Machine Learning and
Applications (ICMLA), pages 727–732. IEEE, 2015.

https://doi.org/10.3233/FI-2017-1473
http://dx.doi.org/10.3233/FI-2017-1473
https://doi.org/10.1016/0304-3975(90)90124-Z
http://dx.doi.org/10.1016/0304-3975(90)90124-Z
http://publications.rwth-aachen.de/record/755408

177

[Koz85] Dexter Kozen. A probabilistic PDL. J. Comput. Syst. Sci., 30(2):162–178,
1985. URL: https://doi.org/10.1016/0022-0000(85)90012-1,
doi:10.1016/0022-0000(85)90012-1

[KS17] Dexter Kozen and Alexandra Silva. Practical coinduction. Mathematical
Structures in Computer Science, 27(7):1132–1152, 2017.

[KY76] Donald E. Knuth and Andrew C. Yao. The complexity of nonuniform
random number generation. 1976.

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings of
the IEEE, 86(11):2278–2324, 1998.

[LDF+21] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier
Remy, and J´ er´ ôme Vouillon. The OCaml system release 4.13:
Documentation and user’s manual. Intern report, Inria, September 2021.
URL: https://hal.inria.fr/hal-00930213

[Ler09] Xavier Leroy. Formal verifcation of a realistic compiler. Communications
of the ACM, 52(7):107–115, 2009.

[Ler15] Xavier Leroy. Using coq’s evaluation mechanisms in anger, 2015. URL:
http://gallium.inria.fr/blog/coq-eval/

[Let08] Pierre Letouzey. Extraction in coq: An overview. In Conference on
Computability in Europe, pages 359–369. Springer, 2008.

[LH14] Andreas Lochbihler and Johannes Hölzl. Recursive functions on lazy lists
via domains and topologies. In Gerwin Klein and Ruben Gamboa, editors,
Interactive Theorem Proving - 5th International Conference, ITP 2014,
Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,
July 14-17, 2014. Proceedings, volume 8558 of Lecture Notes in
Computer Science, pages 341–357. Springer, 2014. URL:
https://doi.org/10.1007/978-3-319-08970-6 22,
doi:10.1007/978-3-319-08970-6 22

[LRG20] Thomas Letan and Yann Régis-Gianas. Freespec: specifying, verifying,
and executing impure computations in coq. In Proceedings of the 9th
ACM SIGPLAN International Conference on Certifed Programs and
Proofs, pages 32–46, 2020.

[LXK+22] Mohsen Lesani, Li-yao Xia, Anders Kaseorg, Christian J. Bell, Adam
Chlipala, Benjamin C. Pierce, and Steve Zdancewic. C4: Verifed
transactional objects. Proc. ACM Program. Lang., 6(OOPSLA):1–31,
2022. URL: https://doi.org/10.1145/3527324, doi:10.1145/3527324

https://doi.org/10.1016/0022-0000(85)90012-1
http://dx.doi.org/10.1016/0022-0000(85)90012-1
https://hal.inria.fr/hal-00930213
http://gallium.inria.fr/blog/coq-eval/
https://doi.org/10.1007/978-3-319-08970-6_22
http://dx.doi.org/10.1007/978-3-319-08970-6_22
https://doi.org/10.1145/3527324
http://dx.doi.org/10.1145/3527324

178

[Mar84] Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in proof
theory. Bibliopolis, 1984.

[McE20] Richard McElreath. Statistical rethinking: A Bayesian course with
examples in R and Stan. Chapman and Hall/CRC, 2020.

[MFP91] Erik Meijer, Maarten M. Fokkinga, and Ross Paterson. Functional
programming with bananas, lenses, envelopes and barbed wire. In John
Hughes, editor, Functional Programming Languages and Computer
Architecture, 5th ACM Conference, Cambridge, MA, USA, August 26-30,
1991, Proceedings, volume 523 of Lecture Notes in Computer Science,
pages 124–144. Springer, 1991. URL:
https://doi.org/10.1007/3540543961 7, doi:10.1007/3540543961 7

[Mil89] Robin Milner. Communication and concurrency, volume 84. Prentice hall
Englewood Cliffs, 1989.

[MKA+15] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and
Jakob von Raumer. The lean theorem prover (system description). In
International Conference on Automated Deduction, pages 378–388.
Springer, 2015.

[ML66] Per Martin-Löf. The defnition of random sequences. Information and
control, 9(6):602–619, 1966.

[ML13] Saunders Mac Lane. Categories for the working mathematician,
volume 5. Springer Science & Business Media, 2013.

[MM05] Annabelle McIver and Carroll Morgan. Abstraction, Refnement and Proof
for Probabilistic Systems. Monographs in Computer Science. Springer,
2005. URL: https://doi.org/10.1007/b138392, doi:10.1007/b138392

[MMS96] Carroll Morgan, Annabelle McIver, and Karen Seidel. Probabilistic
predicate transformers. ACM Trans. Program. Lang. Syst., 18(3):325–353,
1996. URL: https://doi.org/10.1145/229542.229547,
doi:10.1145/229542.229547

[Ngu04] Phong Q. Nguyen. Can we trust cryptographic software? cryptographic
faws in GNU privacy guard v1.2.3. In Christian Cachin and Jan
Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004,
International Conference on the Theory and Applications of
Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004,
Proceedings, volume 3027 of Lecture Notes in Computer Science, pages
555–570. Springer, 2004. URL:
https://doi.org/10.1007/978-3-540-24676-3 33,
doi:10.1007/978-3-540-24676-3 33

https://doi.org/10.1007/3540543961_7
http://dx.doi.org/10.1007/3540543961_7
https://doi.org/10.1007/b138392
http://dx.doi.org/10.1007/b138392
https://doi.org/10.1145/229542.229547
http://dx.doi.org/10.1145/229542.229547
https://doi.org/10.1007/978-3-540-24676-3_33
http://dx.doi.org/10.1007/978-3-540-24676-3_33

179

[OGJ+18] Federico Olmedo, Friedrich Gretz, Nils Jansen, Benjamin Lucien
Kaminski, Joost-Pieter Katoen, and Annabelle McIver. Conditioning in
probabilistic programming. ACM Transactions on Programming
Languages and Systems (TOPLAS), 40(1):1–50, 2018.

[OKKM16] Federico Olmedo, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and
Christoph Matheja. Reasoning about recursive probabilistic programs. In
2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 1–10. IEEE, 2016.

[O’N09] Melissa E. O’Neill. The genuine sieve of eratosthenes. J. Funct. Program.,
19(1):95–106, 2009. URL: https://doi.org/10.1017/S0956796808007004,
doi:10.1017/S0956796808007004

[PA19] Daniel Patterson and Amal Ahmed. The next 700 compiler correctness
theorems (functional pearl). Proc. ACM Program. Lang.,
3(ICFP):85:1–85:29, 2019. URL: https://doi.org/10.1145/3341689,
doi:10.1145/3341689

[PCG+10] Benjamin C Pierce, Chris Casinghino, Marco Gaboardi, Michael
Greenberg, Cat˘ ˘ oberg, and Brent Yorgey. Software alin Hriţcu, Vilhelm Sj¨
foundations. Webpage: http://www. cis. upenn.
edu/bcpierce/sf/current/index. html, 2010.

[PD07] Hoifung Poon and Pedro Domingos. Joint inference in information
extraction. In AAAI, volume 7, pages 913–918, 2007.

[Pfe01] Avi Pfeffer. Ibal: A probabilistic rational programming language. In
IJCAI, pages 733–740. Citeseer, 2001.

[PGJ16] Judea Pearl, Madelyn Glymour, and Nicholas P Jewell. Causal inference
in statistics: A primer. John Wiley & Sons, 2016.

[Pie91] Benjamin C. Pierce. Basic category theory for computer scientists.
Foundations of computing. MIT Press, 1991.

[Pie16] Benjamin C. Pierce. The science of deep specifcation (keynote). In Eelco
Visser, editor, Companion Proceedings of the 2016 ACM SIGPLAN
International Conference on Systems, Programming, Languages and
Applications: Software for Humanity, SPLASH 2016, Amsterdam,
Netherlands, October 30 - November 4, 2016, page 1. ACM, 2016. URL:
https://doi.org/10.1145/2984043.2998388, doi:10.1145/2984043.2998388

[Pou16] Damien Pous. Coinduction all the way up. In Martin Grohe, Eric
Koskinen, and Natarajan Shankar, editors, Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New

https://doi.org/10.1017/S0956796808007004
http://dx.doi.org/10.1017/S0956796808007004
https://doi.org/10.1145/3341689
http://dx.doi.org/10.1145/3341689
https://doi.org/10.1145/2984043.2998388
http://dx.doi.org/10.1145/2984043.2998388
http://www

180

York, NY, USA, July 5-8, 2016, pages 307–316. ACM, 2016. URL:
https://doi.org/10.1145/2933575.2934564, doi:10.1145/2933575.2934564

[Put00] Tumkur K Puttaswamy. The mathematical accomplishments of ancient
indian mathematicians. In Mathematics Across Cultures, pages 409–422.
Springer, 2000.

[R+76] Walter Rudin et al. Principles of mathematical analysis, volume 3.
McGraw-hill New York, 1976.

[RK16] Reuven Y Rubinstein and Dirk P Kroese. Simulation and the Monte Carlo
method. John Wiley & Sons, 2016.

[RM19] Sebastian Raschka and Vahid Mirjalili. Python machine learning:
Machine learning and deep learning with Python, scikit-learn, and
TensorFlow 2. Packt Publishing Ltd, 2019.

[RN22] Vlad Rusu and David Nowak. Defning corecursive functions in Coq
using approximations. In Karim Ali and Jan Vitek, editors, 36th European
Conference on Object-Oriented Programming, ECOOP 2022, June 6-10,
2022, Berlin, Germany, volume 222 of LIPIcs, pages 12:1–12:24. Schloss
Dagstuhl - Leibniz-Zentrum fur¨ Informatik, 2022. URL:
https://doi.org/10.4230/LIPIcs.ECOOP.2022.12,
doi:10.4230/LIPIcs.ECOOP.2022.12

[RU08] Tom Richardson and Ruediger Urbanke. Modern coding theory.
Cambridge university press, 2008.

[San98] Davide Sangiorgi. On the bisimulation proof method. Mathematical
Structures in Computer Science, 8(5):447–479, 1998.

[Sco70] Dana Scott. Outline of a mathematical theory of computation. Oxford
University Computing Laboratory, Programming Research Group Oxford,
1970.

[SCS+19] Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C.
Rinard, and Vikash K. Mansinghka. Bayesian synthesis of probabilistic
programs for automatic data modeling. Proc. ACM Program. Lang.,
3(POPL):37:1–37:32, 2019. URL: https://doi.org/10.1145/3290350,
doi:10.1145/3290350

[Sec20] Kudelski Security. The defnitive guide to ”modulo bias and how to avoid
it”!, 2020. URL: https://research.kudelskisecurity.com/2020/07/28/
the-defnitive-guide-to-modulo-bias-and-how-to-avoid-it/

https://doi.org/10.1145/2933575.2934564
http://dx.doi.org/10.1145/2933575.2934564
https://doi.org/10.4230/LIPIcs.ECOOP.2022.12
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2022.12
https://doi.org/10.1145/3290350
http://dx.doi.org/10.1145/3290350
https://research.kudelskisecurity.com/2020/07/28/the-definitive-guide-to-modulo-bias-and-how-to-avoid-it/
https://research.kudelskisecurity.com/2020/07/28/the-definitive-guide-to-modulo-bias-and-how-to-avoid-it/

181

[SFRM20a] Feras Saad, Cameron E. Freer, Martin C. Rinard, and Vikash Mansinghka.
The fast loaded dice roller: A near-optimal exact sampler for discrete
probability distributions. In Silvia Chiappa and Roberto Calandra, editors,
The 23rd International Conference on Artifcial Intelligence and Statistics,
AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily, Italy],
volume 108 of Proceedings of Machine Learning Research, pages
1036–1046. PMLR, 2020. URL:
http://proceedings.mlr.press/v108/saad20a.html

[SFRM20b] Feras A. Saad, Cameron E. Freer, Martin C. Rinard, and Vikash K.
Mansinghka. Optimal approximate sampling from discrete probability
distributions. Proc. ACM Program. Lang., 4(POPL):36:1–36:31, 2020.
URL: https://doi.org/10.1145/3371104, doi:10.1145/3371104

[Sha48] Claude Elwood Shannon. A mathematical theory of communication. The
Bell system technical journal, 27(3):379–423, 1948.

[SK20] Marcin Szymczak and Joost-Pieter Katoen. Weakest preexpectation
semantics for bayesian inference. CoRR, abs/2005.09013, 2020. URL:
https://arxiv.org/abs/2005.09013, arXiv:2005.09013

[SLD18] Daniel Selsam, Percy Liang, and David L Dill. Formal methods for
probabilistic programming. In Workshop on Probabilistic Programming
Languages, Semantics, and Systems. 2018.

[SM16] Feras Saad and Vikash Mansinghka. Probabilistic data analysis with
probabilistic programming. CoRR, abs/1608.05347, 2016. URL:
http://arxiv.org/abs/1608.05347, arXiv:1608.05347

[Soz09] Matthieu Sozeau. A new look at generalized rewriting in type theory. J.
Formaliz. Reason., 2(1):41–62, 2009. URL:
https://doi.org/10.6092/issn.1972-5787/1574,
doi:10.6092/issn.1972-5787/1574

[SRM21] Feras A. Saad, Martin C. Rinard, and Vikash K. Mansinghka. SPPL:
probabilistic programming with fast exact symbolic inference. In
Stephen N. Freund and Eran Yahav, editors, PLDI ’21: 42nd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation, Virtual Event, Canada, June 20-25, 2021, pages
804–819. ACM, 2021. URL: https://doi.org/10.1145/3453483.3454078,
doi:10.1145/3453483.3454078

[Tea22] The Agda Team. Agda user manual, 2022. URL:
https://agda.readthedocs.io/en/v2.6.2.2.20221128/

http://proceedings.mlr.press/v108/saad20a.html
https://doi.org/10.1145/3371104
http://dx.doi.org/10.1145/3371104
https://arxiv.org/abs/2005.09013
http://arxiv.org/abs/2005.09013
http://arxiv.org/abs/1608.05347
http://arxiv.org/abs/1608.05347
https://doi.org/10.6092/issn.1972-5787/1574
http://dx.doi.org/10.6092/issn.1972-5787/1574
https://doi.org/10.1145/3453483.3454078
http://dx.doi.org/10.1145/3453483.3454078
https://agda.readthedocs.io/en/v2.6.2.2.20221128/

182

[Tho13] Steve Thomas. Decryptocat, 2013. URL:
https://tobtu.com/decryptocat.php

[Tra15] Dmytro Traytel. Formalizing Symbolic Decision Procedures for Regular
Languages. PhD thesis, Technical University Munich, 2015. URL:
https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20151016-1273011-1-9

[TvdMYW16] David Tolpin, Jan Willem van de Meent, Hongseok Yang, and Frank
Wood. Design and implementation of probabilistic programming
language anglican. arXiv preprint arXiv:1608.05263, 2016.

[vdMPYW18] Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank
Wood. An introduction to probabilistic programming. CoRR,
abs/1809.10756, 2018. URL: http://arxiv.org/abs/1809.10756,
arXiv:1809.10756

[VF45] Kurt Von Fritz. The discovery of incommensurability by Hippasus of
Metapontum. Annals of mathematics, pages 242–264, 1945.

[VN51] John Von Neumann. Various techniques used in connection with random
digits. Appl. Math Ser, 12(36-38):5, 1951.

[Wad92] Philip Wadler. The essence of functional programming. In Proceedings of
the 19th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 1–14, 1992.

¨[Wey16] Hermann Weyl. Uber die gleichverteilung von zahlen mod. eins.
Mathematische Annalen, 77(3):313–352, 1916.

[WHR21] Di Wang, Jan Hoffmann, and Thomas W. Reps. Sound probabilistic
inference via guide types. In Stephen N. Freund and Eran Yahav, editors,
PLDI ’21: 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, Virtual Event,
Canada, June 20-25, 2021, pages 788–803. ACM, 2021. URL:
https://doi.org/10.1145/3453483.3454077, doi:10.1145/3453483.3454077

[WW11] Shen SJ Wang and Matt P Wand. Using infer. net for statistical analyses.
The American Statistician, 65(2):115–126, 2011.

[Xia23] Li-yao Xia. Interaction trees, 2023. URL:
https://github.com/DeepSpec/InteractionTrees

[XZH+20] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory
Malecha, Benjamin C. Pierce, and Steve Zdancewic. Interaction trees:
representing recursive and impure programs in coq. Proc. ACM Program.
Lang., 4(POPL):51:1–51:32, 2020. URL:
https://doi.org/10.1145/3371119, doi:10.1145/3371119

https://tobtu.com/decryptocat.php
https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20151016-1273011-1-9
http://arxiv.org/abs/1809.10756
http://arxiv.org/abs/1809.10756
https://doi.org/10.1145/3453483.3454077
http://dx.doi.org/10.1145/3453483.3454077
https://github.com/DeepSpec/InteractionTrees
https://doi.org/10.1145/3371119
http://dx.doi.org/10.1145/3371119

183

[YFW03] Jonathan S Yedidia, William T Freeman, and Yair Weiss. Understanding
belief propagation and its generalizations. Exploring artifcial intelligence
in the new millennium, 8:236–239, 2003.

[ZHK+21] Hengchu Zhang, Wolf Honoré, Nicolas Koh, Yao Li, Yishuai Li, Li-yao
Xia, Lennart Beringer, William Mansky, Benjamin C. Pierce, and Steve
Zdancewic. Verifying an HTTP key-value server with interaction trees and
VST. In Liron Cohen and Cezary Kaliszyk, editors, 12th International
Conference on Interactive Theorem Proving, ITP 2021, June 29 to July 1,
2021, Rome, Italy (Virtual Conference), volume 193 of LIPIcs, pages
32:1–32:19. Schloss Dagstuhl - Leibniz-Zentrum fur¨ Informatik, 2021.
URL: https://doi.org/10.4230/LIPIcs.ITP.2021.32,
doi:10.4230/LIPIcs.ITP.2021.32

[ZSS20] Raymond K Zhao, Ron Steinfeld, and Amin Sakzad. Cosac: Compact and
scalable arbitrary-centered discrete gaussian sampling over integers. In
International Conference on Post-Quantum Cryptography, pages
284–303. Springer, 2020.

https://doi.org/10.4230/LIPIcs.ITP.2021.32
http://dx.doi.org/10.4230/LIPIcs.ITP.2021.32

184

Appendix: Extended Reals

The space R of real numbers provides an account for the so-called incommensurable
√

magnitudes [VF45] such as 2 (discovered by followers of Pythagoras, and perhaps even

earlier in ancient India [Put00]) via its completeness property: any bounded set of reals

has a least upper bound. However, the space R equipped with its usual ordering is

technically not a CPO and is thus not quite sufficient for our purposes. The problem is that

only bounded sets of reals (e.g. the set {x | x2 < 2}) are guaranteed to have least upper

bounds. To ensure the existence of suprema for all subsets, the reals must be extended

with a “point at infnity” +∞ to serve as the supremum of unbounded sets.

In addition, since this work is only ever concerned with nonnegative real numbers we

include a nonnegativity constraint, arriving at the space R∞
≥0 of nonnegative extended reals

defned as follows:

Defnition 127 (R∞
≥0). Defne the type R∞

≥0 of nonnegative extended real numbers by the

following formation rules:

eR-er
eR-infty

r : R 0 ≤ r

er r : R∞ infty : R∞
≥0 ≥0

We let ‘er a’ be denoted by simply ‘a’ when clear from context (e.g., ‘er 0’ denoted

by ‘0’, ‘er 1’ by ‘1’, etc.). The extended reals are ordered in the usual way and such that

a ≤ +∞ for all a : R∞
≥0:

Defnition 128 (≤R∞).
≥0

eR-le-er eR-le-infty

a : R∞a ≤R b ≥0

er a ≤R∞ er b a ≤ infty
≥0

https://github.com/bagnalla/algco/blob/main/eR.v#L41
https://github.com/bagnalla/algco/blob/main/eR.v#L42
https://github.com/bagnalla/algco/blob/main/eR.v#L43
https://github.com/bagnalla/algco/blob/main/eR.v#L54
https://github.com/bagnalla/algco/blob/main/eR.v#L56
https://github.com/bagnalla/algco/blob/main/eR.v#L55

185

Addition, subtraction, multiplication and the multiplicative inverse operator (from

which division is derived) are defned as follows:

Defnition 129 (eRplus). For a : R∞ and b : R∞
≥0, defne a + b : R∞ by cases:

≥0 ≥0

+R∞
≥0

: R∞
≥0 → R∞

≥0 → R∞
≥0

infty + , infty

+ infty , infty

er a + er b , er (a + b)

Defnition 130 (eRminus). For a : R∞ and b : R∞
≥0, defne a − b : R∞ by cases:

≥0 ≥0

−R∞
≥0

: R∞
≥0 → R∞

≥0 → R∞
≥0

infty − er , infty

− infty , er 0

er a − er b , if b ≤ a then er (a − b) else er 0

Defnition 131 (eRmult). For a : R∞ and b : R∞
≥0, defne a · b : R∞ by cases:

≥0 ≥0

·R∞
≥0

: R∞
≥0 → R∞

≥0 → R∞
≥0

infty · b , if b = er 0 then er 0 else infty

a · infty , if a = er 0 then er 0 else infty

er a · er b , er (a · b)

https://github.com/bagnalla/algco/blob/main/eR.v#L139
https://github.com/bagnalla/algco/blob/main/eR.v#L139
https://github.com/bagnalla/algco/blob/main/eR.v#L146
https://github.com/bagnalla/algco/blob/main/eR.v#L146
https://github.com/bagnalla/algco/blob/main/eR.v#L156
https://github.com/bagnalla/algco/blob/main/eR.v#L146

186

Defnition 132 (eRinv). For a : R∞
≥0, defne a−1 : R∞

≥0 by cases:

eRinv : R∞
≥0 → R∞

≥0

infty−1 , er 0

(er r)−1 , if a = 0 then infty else er a−1

We follow the convention that multiplication by 0 annihilates all elements, including

+∞. That is, we have 0 · a = a · 0 = 0 for all a, even when a = +∞. However, when a , 0,

+∞ · a = a · +∞ = +∞.

Exponentiation and division are defned as follows, where exponentiation is derived

via repeated multiplication and division via multiplication by the inverse of the right-hand

argument:

Defnition 133 (eRpow). For a : R∞ and n : N, defne an : R∞ by induction on n:
≥0 ≥0

eRpow : R∞
≥0 → N → R∞

≥0

a0 , er 1

aS n , a · an

a
· b−1Defnition 134 (eRdiv). For a : R∞ and b : R∞ , defne : R∞

≥0 , a .
≥0 ≥0 b

Proof Automation Many goals involving real numbers can be automatically proved by

the lra tactic from Coq’s standard library. This is a great luxury as it relieves the burden of

handling meticulous details of arithmetic typically skipped over in pencil-and-paper

proofs but which are annoyingly labourious to carry out in a formal proof environment.

https://github.com/bagnalla/algco/blob/main/eR.v#L163
https://github.com/bagnalla/algco/blob/main/eR.v#L163
https://github.com/bagnalla/algco/blob/main/eR.v#L163
https://github.com/bagnalla/algco/blob/main/eR.v#L173
https://github.com/bagnalla/algco/blob/main/eR.v#L185

187

Unfortunately, by defning our own type R∞
≥0 of extended reals we lose access to the

automation machinery of lra and similar tactics (and we are not aware at the time of

writing of any straightforward way to extend said automation to handle new types).

However, we are able to partially compensate for this loss by defning a custom proof

tactic ‘eRauto‘ that implements a simple rewrite system for basic identities (e.g.,

0 + a = a) and automatically applies lemmas drawn from a database of commonly useful

results (contained in the fle ‘eR.v’).

https://github.com/bagnalla/algco/blob/main/eR.v#L1745
https://github.com/bagnalla/algco/blob/main/eR.v

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
!

Thesis and Dissertation Services

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation and Purpose
	Challenges
	Contributions
	Limitations

	Background
	Probabilistic Programming Languages
	Inference
	The Conditional Probabilistic Guarded Command Language
	Conditional Weakest Pre-Expectation Semantics
	Semantics of Loops
	Interaction Trees
	The Random Bit Model
	Uniform Distribution Modulo 1
	Induction and Coinduction
	Domain Theory
	Measure Theory

	Formal Foundation
	Axiomatic Extensions
	Computing Suprema
	Conditional Symmetry
	cpGCL Formalized
	cwp Formalized

	Compiling cpGCL
	Choice-Fix (CF) Trees
	CF Tree Semantics
	Compiling to CF Trees
	De-Biasing CF Trees
	Generating Interaction Trees

	Correctness of Sampling
	The Source of Randomness
	Inference as Measure
	Equidistribution

	Algebraic Coinductives
	Appetite for Elimination
	Algebraic CPOs
	Continuous Extensions
	Cocontinuous Extensions
	(Co-)continuous Properties
	Conats
	Streams
	Coinductive Tries

	Cotrees
	Coinductive Trees as an Algebraic CPO
	Cofolds Over Cotrees
	Weakest Pre-Expectations for Cotrees
	Coinductive Measure
	Compiling CF Trees to Cotrees
	Relating to Interaction Trees

	Empirical Validation
	Dueling Coins
	Geometric Primes
	Uniform Sampling
	Discrete Gaussian
	Hare and Tortoise

	Related Work
	Zar
	AlgCo

	Conclusion
	Achievements of This Dissertation
	Directions for Future Work

	References
	Appendix: Extended Reals

